This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatfval | |- ( ( S e. V /\ T e. W ) -> ( S ++ T ) = ( x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) |-> if ( x e. ( 0 ..^ ( # ` S ) ) , ( S ` x ) , ( T ` ( x - ( # ` S ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( S e. V -> S e. _V ) |
|
| 2 | elex | |- ( T e. W -> T e. _V ) |
|
| 3 | fveq2 | |- ( s = S -> ( # ` s ) = ( # ` S ) ) |
|
| 4 | fveq2 | |- ( t = T -> ( # ` t ) = ( # ` T ) ) |
|
| 5 | 3 4 | oveqan12d | |- ( ( s = S /\ t = T ) -> ( ( # ` s ) + ( # ` t ) ) = ( ( # ` S ) + ( # ` T ) ) ) |
| 6 | 5 | oveq2d | |- ( ( s = S /\ t = T ) -> ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) = ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
| 7 | 3 | oveq2d | |- ( s = S -> ( 0 ..^ ( # ` s ) ) = ( 0 ..^ ( # ` S ) ) ) |
| 8 | 7 | eleq2d | |- ( s = S -> ( x e. ( 0 ..^ ( # ` s ) ) <-> x e. ( 0 ..^ ( # ` S ) ) ) ) |
| 9 | 8 | adantr | |- ( ( s = S /\ t = T ) -> ( x e. ( 0 ..^ ( # ` s ) ) <-> x e. ( 0 ..^ ( # ` S ) ) ) ) |
| 10 | fveq1 | |- ( s = S -> ( s ` x ) = ( S ` x ) ) |
|
| 11 | 10 | adantr | |- ( ( s = S /\ t = T ) -> ( s ` x ) = ( S ` x ) ) |
| 12 | simpr | |- ( ( s = S /\ t = T ) -> t = T ) |
|
| 13 | 3 | oveq2d | |- ( s = S -> ( x - ( # ` s ) ) = ( x - ( # ` S ) ) ) |
| 14 | 13 | adantr | |- ( ( s = S /\ t = T ) -> ( x - ( # ` s ) ) = ( x - ( # ` S ) ) ) |
| 15 | 12 14 | fveq12d | |- ( ( s = S /\ t = T ) -> ( t ` ( x - ( # ` s ) ) ) = ( T ` ( x - ( # ` S ) ) ) ) |
| 16 | 9 11 15 | ifbieq12d | |- ( ( s = S /\ t = T ) -> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) = if ( x e. ( 0 ..^ ( # ` S ) ) , ( S ` x ) , ( T ` ( x - ( # ` S ) ) ) ) ) |
| 17 | 6 16 | mpteq12dv | |- ( ( s = S /\ t = T ) -> ( x e. ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |-> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) ) = ( x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) |-> if ( x e. ( 0 ..^ ( # ` S ) ) , ( S ` x ) , ( T ` ( x - ( # ` S ) ) ) ) ) ) |
| 18 | df-concat | |- ++ = ( s e. _V , t e. _V |-> ( x e. ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |-> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) ) ) |
|
| 19 | ovex | |- ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) e. _V |
|
| 20 | 19 | mptex | |- ( x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) |-> if ( x e. ( 0 ..^ ( # ` S ) ) , ( S ` x ) , ( T ` ( x - ( # ` S ) ) ) ) ) e. _V |
| 21 | 17 18 20 | ovmpoa | |- ( ( S e. _V /\ T e. _V ) -> ( S ++ T ) = ( x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) |-> if ( x e. ( 0 ..^ ( # ` S ) ) , ( S ` x ) , ( T ` ( x - ( # ` S ) ) ) ) ) ) |
| 22 | 1 2 21 | syl2an | |- ( ( S e. V /\ T e. W ) -> ( S ++ T ) = ( x e. ( 0 ..^ ( ( # ` S ) + ( # ` T ) ) ) |-> if ( x e. ( 0 ..^ ( # ` S ) ) , ( S ` x ) , ( T ` ( x - ( # ` S ) ) ) ) ) ) |