This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofs1 | |- ( ( A e. S /\ B e. T ) -> ( <" A "> oF R <" B "> ) = <" ( A R B ) "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex | |- { 0 } e. _V |
|
| 2 | 1 | a1i | |- ( ( A e. S /\ B e. T ) -> { 0 } e. _V ) |
| 3 | simpll | |- ( ( ( A e. S /\ B e. T ) /\ i e. { 0 } ) -> A e. S ) |
|
| 4 | simplr | |- ( ( ( A e. S /\ B e. T ) /\ i e. { 0 } ) -> B e. T ) |
|
| 5 | s1val | |- ( A e. S -> <" A "> = { <. 0 , A >. } ) |
|
| 6 | 0nn0 | |- 0 e. NN0 |
|
| 7 | fmptsn | |- ( ( 0 e. NN0 /\ A e. S ) -> { <. 0 , A >. } = ( i e. { 0 } |-> A ) ) |
|
| 8 | 6 7 | mpan | |- ( A e. S -> { <. 0 , A >. } = ( i e. { 0 } |-> A ) ) |
| 9 | 5 8 | eqtrd | |- ( A e. S -> <" A "> = ( i e. { 0 } |-> A ) ) |
| 10 | 9 | adantr | |- ( ( A e. S /\ B e. T ) -> <" A "> = ( i e. { 0 } |-> A ) ) |
| 11 | s1val | |- ( B e. T -> <" B "> = { <. 0 , B >. } ) |
|
| 12 | fmptsn | |- ( ( 0 e. NN0 /\ B e. T ) -> { <. 0 , B >. } = ( i e. { 0 } |-> B ) ) |
|
| 13 | 6 12 | mpan | |- ( B e. T -> { <. 0 , B >. } = ( i e. { 0 } |-> B ) ) |
| 14 | 11 13 | eqtrd | |- ( B e. T -> <" B "> = ( i e. { 0 } |-> B ) ) |
| 15 | 14 | adantl | |- ( ( A e. S /\ B e. T ) -> <" B "> = ( i e. { 0 } |-> B ) ) |
| 16 | 2 3 4 10 15 | offval2 | |- ( ( A e. S /\ B e. T ) -> ( <" A "> oF R <" B "> ) = ( i e. { 0 } |-> ( A R B ) ) ) |
| 17 | ovex | |- ( A R B ) e. _V |
|
| 18 | s1val | |- ( ( A R B ) e. _V -> <" ( A R B ) "> = { <. 0 , ( A R B ) >. } ) |
|
| 19 | 17 18 | ax-mp | |- <" ( A R B ) "> = { <. 0 , ( A R B ) >. } |
| 20 | fmptsn | |- ( ( 0 e. NN0 /\ ( A R B ) e. _V ) -> { <. 0 , ( A R B ) >. } = ( i e. { 0 } |-> ( A R B ) ) ) |
|
| 21 | 6 17 20 | mp2an | |- { <. 0 , ( A R B ) >. } = ( i e. { 0 } |-> ( A R B ) ) |
| 22 | 19 21 | eqtri | |- <" ( A R B ) "> = ( i e. { 0 } |-> ( A R B ) ) |
| 23 | 16 22 | eqtr4di | |- ( ( A e. S /\ B e. T ) -> ( <" A "> oF R <" B "> ) = <" ( A R B ) "> ) |