This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preordered set is equipped with a thin category. (Contributed by Zhi Wang, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| prstcnid.k | |- ( ph -> K e. Proset ) |
||
| Assertion | prstcthin | |- ( ph -> C e. ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | prstcnid.k | |- ( ph -> K e. Proset ) |
|
| 3 | eqidd | |- ( ph -> ( Base ` C ) = ( Base ` C ) ) |
|
| 4 | eqidd | |- ( ph -> ( le ` C ) = ( le ` C ) ) |
|
| 5 | 1 2 4 | prstchomval | |- ( ph -> ( ( le ` C ) X. { 1o } ) = ( Hom ` C ) ) |
| 6 | ovex | |- ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) e. _V |
|
| 7 | 0ex | |- (/) e. _V |
|
| 8 | ccoid | |- comp = Slot ( comp ` ndx ) |
|
| 9 | 8 | setsid | |- ( ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) e. _V /\ (/) e. _V ) -> (/) = ( comp ` ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) ) |
| 10 | 6 7 9 | mp2an | |- (/) = ( comp ` ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
| 11 | 1 2 | prstcval | |- ( ph -> C = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
| 12 | 11 | fveq2d | |- ( ph -> ( comp ` C ) = ( comp ` ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) ) |
| 13 | 10 12 | eqtr4id | |- ( ph -> (/) = ( comp ` C ) ) |
| 14 | 1 2 | prstcprs | |- ( ph -> C e. Proset ) |
| 15 | 3 5 13 4 14 | prsthinc | |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. ( Base ` C ) |-> (/) ) ) ) |
| 16 | 15 | simpld | |- ( ph -> C e. ThinCat ) |