This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of Adamek p. 33. (Contributed by Zhi Wang, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thinccisod.c | |- C = ( CatCat ` U ) |
|
| thinccisod.r | |- R = ( Base ` X ) |
||
| thinccisod.s | |- S = ( Base ` Y ) |
||
| thinccisod.h | |- H = ( Hom ` X ) |
||
| thinccisod.j | |- J = ( Hom ` Y ) |
||
| thinccisod.u | |- ( ph -> U e. V ) |
||
| thinccisod.x | |- ( ph -> X e. U ) |
||
| thinccisod.y | |- ( ph -> Y e. U ) |
||
| thinccisod.xt | |- ( ph -> X e. ThinCat ) |
||
| thinccisod.yt | |- ( ph -> Y e. ThinCat ) |
||
| thinccisod.f | |- ( ph -> F : R -1-1-onto-> S ) |
||
| thinccisod.1 | |- ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) |
||
| Assertion | thinccisod | |- ( ph -> X ( ~=c ` C ) Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thinccisod.c | |- C = ( CatCat ` U ) |
|
| 2 | thinccisod.r | |- R = ( Base ` X ) |
|
| 3 | thinccisod.s | |- S = ( Base ` Y ) |
|
| 4 | thinccisod.h | |- H = ( Hom ` X ) |
|
| 5 | thinccisod.j | |- J = ( Hom ` Y ) |
|
| 6 | thinccisod.u | |- ( ph -> U e. V ) |
|
| 7 | thinccisod.x | |- ( ph -> X e. U ) |
|
| 8 | thinccisod.y | |- ( ph -> Y e. U ) |
|
| 9 | thinccisod.xt | |- ( ph -> X e. ThinCat ) |
|
| 10 | thinccisod.yt | |- ( ph -> Y e. ThinCat ) |
|
| 11 | thinccisod.f | |- ( ph -> F : R -1-1-onto-> S ) |
|
| 12 | thinccisod.1 | |- ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) |
|
| 13 | f1of | |- ( F : R -1-1-onto-> S -> F : R --> S ) |
|
| 14 | 11 13 | syl | |- ( ph -> F : R --> S ) |
| 15 | fvexd | |- ( ph -> ( Base ` X ) e. _V ) |
|
| 16 | 2 15 | eqeltrid | |- ( ph -> R e. _V ) |
| 17 | 14 16 | fexd | |- ( ph -> F e. _V ) |
| 18 | 12 | ralrimivva | |- ( ph -> A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) |
| 19 | 18 11 | jca | |- ( ph -> ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) /\ F : R -1-1-onto-> S ) ) |
| 20 | fveq1 | |- ( f = F -> ( f ` x ) = ( F ` x ) ) |
|
| 21 | fveq1 | |- ( f = F -> ( f ` y ) = ( F ` y ) ) |
|
| 22 | 20 21 | oveq12d | |- ( f = F -> ( ( f ` x ) J ( f ` y ) ) = ( ( F ` x ) J ( F ` y ) ) ) |
| 23 | 22 | eqeq1d | |- ( f = F -> ( ( ( f ` x ) J ( f ` y ) ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) |
| 24 | 23 | bibi2d | |- ( f = F -> ( ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) <-> ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) ) |
| 25 | 24 | 2ralbidv | |- ( f = F -> ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) <-> A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) ) |
| 26 | f1oeq1 | |- ( f = F -> ( f : R -1-1-onto-> S <-> F : R -1-1-onto-> S ) ) |
|
| 27 | 25 26 | anbi12d | |- ( f = F -> ( ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) /\ f : R -1-1-onto-> S ) <-> ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( F ` x ) J ( F ` y ) ) = (/) ) /\ F : R -1-1-onto-> S ) ) ) |
| 28 | 17 19 27 | spcedv | |- ( ph -> E. f ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) /\ f : R -1-1-onto-> S ) ) |
| 29 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 30 | 9 | thinccd | |- ( ph -> X e. Cat ) |
| 31 | 7 30 | elind | |- ( ph -> X e. ( U i^i Cat ) ) |
| 32 | 1 29 6 | catcbas | |- ( ph -> ( Base ` C ) = ( U i^i Cat ) ) |
| 33 | 31 32 | eleqtrrd | |- ( ph -> X e. ( Base ` C ) ) |
| 34 | 10 | thinccd | |- ( ph -> Y e. Cat ) |
| 35 | 8 34 | elind | |- ( ph -> Y e. ( U i^i Cat ) ) |
| 36 | 35 32 | eleqtrrd | |- ( ph -> Y e. ( Base ` C ) ) |
| 37 | 1 29 2 3 4 5 6 33 36 9 10 | thincciso | |- ( ph -> ( X ( ~=c ` C ) Y <-> E. f ( A. x e. R A. y e. R ( ( x H y ) = (/) <-> ( ( f ` x ) J ( f ` y ) ) = (/) ) /\ f : R -1-1-onto-> S ) ) ) |
| 38 | 28 37 | mpbird | |- ( ph -> X ( ~=c ` C ) Y ) |