This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converted category is a poset iff the original proset is a poset. (Contributed by Zhi Wang, 26-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | postc.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| postc.k | |- ( ph -> K e. Proset ) |
||
| Assertion | postcpos | |- ( ph -> ( K e. Poset <-> C e. Poset ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | postc.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | postc.k | |- ( ph -> K e. Proset ) |
|
| 3 | 1 2 | prstcprs | |- ( ph -> C e. Proset ) |
| 4 | eqidd | |- ( ph -> ( Base ` K ) = ( Base ` K ) ) |
|
| 5 | 1 2 4 | prstcbas | |- ( ph -> ( Base ` K ) = ( Base ` C ) ) |
| 6 | eqidd | |- ( ph -> ( le ` K ) = ( le ` K ) ) |
|
| 7 | 1 2 6 | prstcle | |- ( ph -> ( x ( le ` K ) y <-> x ( le ` C ) y ) ) |
| 8 | 7 | adantr | |- ( ( ph /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( le ` K ) y <-> x ( le ` C ) y ) ) |
| 9 | 2 3 4 5 8 | pospropd | |- ( ph -> ( K e. Poset <-> C e. Poset ) ) |