This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppcthin.o | |- O = ( oppCat ` C ) |
|
| Assertion | oppcthin | |- ( C e. ThinCat -> O e. ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcthin.o | |- O = ( oppCat ` C ) |
|
| 2 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 3 | 1 2 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 4 | 3 | a1i | |- ( C e. ThinCat -> ( Base ` C ) = ( Base ` O ) ) |
| 5 | eqidd | |- ( C e. ThinCat -> ( Hom ` O ) = ( Hom ` O ) ) |
|
| 6 | simpl | |- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. ThinCat ) |
|
| 7 | simprr | |- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 8 | simprl | |- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 9 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 10 | 6 7 8 2 9 | thincmo | |- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E* f f e. ( y ( Hom ` C ) x ) ) |
| 11 | 9 1 | oppchom | |- ( x ( Hom ` O ) y ) = ( y ( Hom ` C ) x ) |
| 12 | 11 | eleq2i | |- ( f e. ( x ( Hom ` O ) y ) <-> f e. ( y ( Hom ` C ) x ) ) |
| 13 | 12 | mobii | |- ( E* f f e. ( x ( Hom ` O ) y ) <-> E* f f e. ( y ( Hom ` C ) x ) ) |
| 14 | 10 13 | sylibr | |- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E* f f e. ( x ( Hom ` O ) y ) ) |
| 15 | thincc | |- ( C e. ThinCat -> C e. Cat ) |
|
| 16 | 1 | oppccat | |- ( C e. Cat -> O e. Cat ) |
| 17 | 15 16 | syl | |- ( C e. ThinCat -> O e. Cat ) |
| 18 | 4 5 14 17 | isthincd | |- ( C e. ThinCat -> O e. ThinCat ) |