This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The dual of a preordered set and the opposite category have the same set of objects. (Contributed by Zhi Wang, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| prstcnid.k | |- ( ph -> K e. Proset ) |
||
| oduoppcbas.d | |- ( ph -> D = ( ProsetToCat ` ( ODual ` K ) ) ) |
||
| oduoppcbas.o | |- O = ( oppCat ` C ) |
||
| Assertion | oduoppcbas | |- ( ph -> ( Base ` D ) = ( Base ` O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | prstcnid.k | |- ( ph -> K e. Proset ) |
|
| 3 | oduoppcbas.d | |- ( ph -> D = ( ProsetToCat ` ( ODual ` K ) ) ) |
|
| 4 | oduoppcbas.o | |- O = ( oppCat ` C ) |
|
| 5 | eqid | |- ( ODual ` K ) = ( ODual ` K ) |
|
| 6 | 5 | oduprs | |- ( K e. Proset -> ( ODual ` K ) e. Proset ) |
| 7 | 2 6 | syl | |- ( ph -> ( ODual ` K ) e. Proset ) |
| 8 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 9 | 5 8 | odubas | |- ( Base ` K ) = ( Base ` ( ODual ` K ) ) |
| 10 | 9 | a1i | |- ( ph -> ( Base ` K ) = ( Base ` ( ODual ` K ) ) ) |
| 11 | 3 7 10 | prstcbas | |- ( ph -> ( Base ` K ) = ( Base ` D ) ) |
| 12 | 11 | eqcomd | |- ( ph -> ( Base ` D ) = ( Base ` K ) ) |
| 13 | 1 2 12 | prstcbas | |- ( ph -> ( Base ` D ) = ( Base ` C ) ) |
| 14 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 15 | 4 14 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 16 | 13 15 | eqtrdi | |- ( ph -> ( Base ` D ) = ( Base ` O ) ) |