This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of a multiple divides the order of the base point. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odmulgid.1 | |- X = ( Base ` G ) |
|
| odmulgid.2 | |- O = ( od ` G ) |
||
| odmulgid.3 | |- .x. = ( .g ` G ) |
||
| Assertion | odmulg2 | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` ( N .x. A ) ) || ( O ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odmulgid.1 | |- X = ( Base ` G ) |
|
| 2 | odmulgid.2 | |- O = ( od ` G ) |
|
| 3 | odmulgid.3 | |- .x. = ( .g ` G ) |
|
| 4 | 1 2 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 5 | 4 | nn0zd | |- ( A e. X -> ( O ` A ) e. ZZ ) |
| 6 | 5 | 3ad2ant2 | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) e. ZZ ) |
| 7 | simp3 | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> N e. ZZ ) |
|
| 8 | dvdsmul1 | |- ( ( ( O ` A ) e. ZZ /\ N e. ZZ ) -> ( O ` A ) || ( ( O ` A ) x. N ) ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) || ( ( O ` A ) x. N ) ) |
| 10 | 1 2 3 | odmulgid | |- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. ZZ ) -> ( ( O ` ( N .x. A ) ) || ( O ` A ) <-> ( O ` A ) || ( ( O ` A ) x. N ) ) ) |
| 11 | 6 10 | mpdan | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( ( O ` ( N .x. A ) ) || ( O ` A ) <-> ( O ` A ) || ( ( O ` A ) x. N ) ) ) |
| 12 | 9 11 | mpbird | |- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` ( N .x. A ) ) || ( O ` A ) ) |