This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiples of an element with infinite order form an infinite cyclic subgroup of G . (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odf1.1 | |- X = ( Base ` G ) |
|
| odf1.2 | |- O = ( od ` G ) |
||
| odf1.3 | |- .x. = ( .g ` G ) |
||
| odf1.4 | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
||
| Assertion | odf1 | |- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 0 <-> F : ZZ -1-1-> X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odf1.1 | |- X = ( Base ` G ) |
|
| 2 | odf1.2 | |- O = ( od ` G ) |
|
| 3 | odf1.3 | |- .x. = ( .g ` G ) |
|
| 4 | odf1.4 | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
|
| 5 | 1 3 | mulgcl | |- ( ( G e. Grp /\ x e. ZZ /\ A e. X ) -> ( x .x. A ) e. X ) |
| 6 | 5 | 3expa | |- ( ( ( G e. Grp /\ x e. ZZ ) /\ A e. X ) -> ( x .x. A ) e. X ) |
| 7 | 6 | an32s | |- ( ( ( G e. Grp /\ A e. X ) /\ x e. ZZ ) -> ( x .x. A ) e. X ) |
| 8 | 7 4 | fmptd | |- ( ( G e. Grp /\ A e. X ) -> F : ZZ --> X ) |
| 9 | 8 | adantr | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) -> F : ZZ --> X ) |
| 10 | oveq1 | |- ( x = y -> ( x .x. A ) = ( y .x. A ) ) |
|
| 11 | ovex | |- ( x .x. A ) e. _V |
|
| 12 | 10 4 11 | fvmpt3i | |- ( y e. ZZ -> ( F ` y ) = ( y .x. A ) ) |
| 13 | oveq1 | |- ( x = z -> ( x .x. A ) = ( z .x. A ) ) |
|
| 14 | 13 4 11 | fvmpt3i | |- ( z e. ZZ -> ( F ` z ) = ( z .x. A ) ) |
| 15 | 12 14 | eqeqan12d | |- ( ( y e. ZZ /\ z e. ZZ ) -> ( ( F ` y ) = ( F ` z ) <-> ( y .x. A ) = ( z .x. A ) ) ) |
| 16 | 15 | adantl | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( F ` y ) = ( F ` z ) <-> ( y .x. A ) = ( z .x. A ) ) ) |
| 17 | simplr | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( O ` A ) = 0 ) |
|
| 18 | 17 | breq1d | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( O ` A ) || ( y - z ) <-> 0 || ( y - z ) ) ) |
| 19 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 20 | 1 2 3 19 | odcong | |- ( ( G e. Grp /\ A e. X /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( O ` A ) || ( y - z ) <-> ( y .x. A ) = ( z .x. A ) ) ) |
| 21 | 20 | ad4ant124 | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( O ` A ) || ( y - z ) <-> ( y .x. A ) = ( z .x. A ) ) ) |
| 22 | zsubcl | |- ( ( y e. ZZ /\ z e. ZZ ) -> ( y - z ) e. ZZ ) |
|
| 23 | 22 | adantl | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( y - z ) e. ZZ ) |
| 24 | 0dvds | |- ( ( y - z ) e. ZZ -> ( 0 || ( y - z ) <-> ( y - z ) = 0 ) ) |
|
| 25 | 23 24 | syl | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( 0 || ( y - z ) <-> ( y - z ) = 0 ) ) |
| 26 | 18 21 25 | 3bitr3d | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( y .x. A ) = ( z .x. A ) <-> ( y - z ) = 0 ) ) |
| 27 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 28 | zcn | |- ( z e. ZZ -> z e. CC ) |
|
| 29 | subeq0 | |- ( ( y e. CC /\ z e. CC ) -> ( ( y - z ) = 0 <-> y = z ) ) |
|
| 30 | 27 28 29 | syl2an | |- ( ( y e. ZZ /\ z e. ZZ ) -> ( ( y - z ) = 0 <-> y = z ) ) |
| 31 | 30 | adantl | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( y - z ) = 0 <-> y = z ) ) |
| 32 | 16 26 31 | 3bitrd | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( F ` y ) = ( F ` z ) <-> y = z ) ) |
| 33 | 32 | biimpd | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
| 34 | 33 | ralrimivva | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) -> A. y e. ZZ A. z e. ZZ ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
| 35 | dff13 | |- ( F : ZZ -1-1-> X <-> ( F : ZZ --> X /\ A. y e. ZZ A. z e. ZZ ( ( F ` y ) = ( F ` z ) -> y = z ) ) ) |
|
| 36 | 9 34 35 | sylanbrc | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) -> F : ZZ -1-1-> X ) |
| 37 | 1 2 3 19 | odid | |- ( A e. X -> ( ( O ` A ) .x. A ) = ( 0g ` G ) ) |
| 38 | 1 19 3 | mulg0 | |- ( A e. X -> ( 0 .x. A ) = ( 0g ` G ) ) |
| 39 | 37 38 | eqtr4d | |- ( A e. X -> ( ( O ` A ) .x. A ) = ( 0 .x. A ) ) |
| 40 | 39 | ad2antlr | |- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( ( O ` A ) .x. A ) = ( 0 .x. A ) ) |
| 41 | 1 2 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 42 | 41 | ad2antlr | |- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( O ` A ) e. NN0 ) |
| 43 | 42 | nn0zd | |- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( O ` A ) e. ZZ ) |
| 44 | oveq1 | |- ( x = ( O ` A ) -> ( x .x. A ) = ( ( O ` A ) .x. A ) ) |
|
| 45 | 44 4 11 | fvmpt3i | |- ( ( O ` A ) e. ZZ -> ( F ` ( O ` A ) ) = ( ( O ` A ) .x. A ) ) |
| 46 | 43 45 | syl | |- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( F ` ( O ` A ) ) = ( ( O ` A ) .x. A ) ) |
| 47 | 0zd | |- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> 0 e. ZZ ) |
|
| 48 | oveq1 | |- ( x = 0 -> ( x .x. A ) = ( 0 .x. A ) ) |
|
| 49 | 48 4 11 | fvmpt3i | |- ( 0 e. ZZ -> ( F ` 0 ) = ( 0 .x. A ) ) |
| 50 | 47 49 | syl | |- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( F ` 0 ) = ( 0 .x. A ) ) |
| 51 | 40 46 50 | 3eqtr4d | |- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( F ` ( O ` A ) ) = ( F ` 0 ) ) |
| 52 | simpr | |- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> F : ZZ -1-1-> X ) |
|
| 53 | f1fveq | |- ( ( F : ZZ -1-1-> X /\ ( ( O ` A ) e. ZZ /\ 0 e. ZZ ) ) -> ( ( F ` ( O ` A ) ) = ( F ` 0 ) <-> ( O ` A ) = 0 ) ) |
|
| 54 | 52 43 47 53 | syl12anc | |- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( ( F ` ( O ` A ) ) = ( F ` 0 ) <-> ( O ` A ) = 0 ) ) |
| 55 | 51 54 | mpbid | |- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( O ` A ) = 0 ) |
| 56 | 36 55 | impbida | |- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 0 <-> F : ZZ -1-1-> X ) ) |