This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiples of an element with infinite order form an infinite cyclic subgroup of G . (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odf1.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odf1.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odf1.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odf1.4 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | ||
| Assertion | odf1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 ↔ 𝐹 : ℤ –1-1→ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odf1.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odf1.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odf1.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odf1.4 | ⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | |
| 5 | 1 3 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 · 𝐴 ) ∈ 𝑋 ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 · 𝐴 ) ∈ 𝑋 ) |
| 7 | 6 | an32s | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 · 𝐴 ) ∈ 𝑋 ) |
| 8 | 7 4 | fmptd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐹 : ℤ ⟶ 𝑋 ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝐹 : ℤ ⟶ 𝑋 ) |
| 10 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) | |
| 11 | ovex | ⊢ ( 𝑥 · 𝐴 ) ∈ V | |
| 12 | 10 4 11 | fvmpt3i | ⊢ ( 𝑦 ∈ ℤ → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 · 𝐴 ) ) |
| 13 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 · 𝐴 ) = ( 𝑧 · 𝐴 ) ) | |
| 14 | 13 4 11 | fvmpt3i | ⊢ ( 𝑧 ∈ ℤ → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 · 𝐴 ) ) |
| 15 | 12 14 | eqeqan12d | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑦 · 𝐴 ) = ( 𝑧 · 𝐴 ) ) ) |
| 16 | 15 | adantl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑦 · 𝐴 ) = ( 𝑧 · 𝐴 ) ) ) |
| 17 | simplr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝑂 ‘ 𝐴 ) = 0 ) | |
| 18 | 17 | breq1d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑦 − 𝑧 ) ↔ 0 ∥ ( 𝑦 − 𝑧 ) ) ) |
| 19 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 20 | 1 2 3 19 | odcong | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑦 − 𝑧 ) ↔ ( 𝑦 · 𝐴 ) = ( 𝑧 · 𝐴 ) ) ) |
| 21 | 20 | ad4ant124 | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑦 − 𝑧 ) ↔ ( 𝑦 · 𝐴 ) = ( 𝑧 · 𝐴 ) ) ) |
| 22 | zsubcl | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑦 − 𝑧 ) ∈ ℤ ) | |
| 23 | 22 | adantl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 𝑦 − 𝑧 ) ∈ ℤ ) |
| 24 | 0dvds | ⊢ ( ( 𝑦 − 𝑧 ) ∈ ℤ → ( 0 ∥ ( 𝑦 − 𝑧 ) ↔ ( 𝑦 − 𝑧 ) = 0 ) ) | |
| 25 | 23 24 | syl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( 0 ∥ ( 𝑦 − 𝑧 ) ↔ ( 𝑦 − 𝑧 ) = 0 ) ) |
| 26 | 18 21 25 | 3bitr3d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑦 · 𝐴 ) = ( 𝑧 · 𝐴 ) ↔ ( 𝑦 − 𝑧 ) = 0 ) ) |
| 27 | zcn | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) | |
| 28 | zcn | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) | |
| 29 | subeq0 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑦 − 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ) | |
| 30 | 27 28 29 | syl2an | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝑦 − 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ) |
| 31 | 30 | adantl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝑦 − 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ) |
| 32 | 16 26 31 | 3bitrd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
| 33 | 32 | biimpd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 34 | 33 | ralrimivva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 35 | dff13 | ⊢ ( 𝐹 : ℤ –1-1→ 𝑋 ↔ ( 𝐹 : ℤ ⟶ 𝑋 ∧ ∀ 𝑦 ∈ ℤ ∀ 𝑧 ∈ ℤ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 36 | 9 34 35 | sylanbrc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝐹 : ℤ –1-1→ 𝑋 ) |
| 37 | 1 2 3 19 | odid | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 38 | 1 19 3 | mulg0 | ⊢ ( 𝐴 ∈ 𝑋 → ( 0 · 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 39 | 37 38 | eqtr4d | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = ( 0 · 𝐴 ) ) |
| 40 | 39 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = ( 0 · 𝐴 ) ) |
| 41 | 1 2 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 42 | 41 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 43 | 42 | nn0zd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 44 | oveq1 | ⊢ ( 𝑥 = ( 𝑂 ‘ 𝐴 ) → ( 𝑥 · 𝐴 ) = ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) | |
| 45 | 44 4 11 | fvmpt3i | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ → ( 𝐹 ‘ ( 𝑂 ‘ 𝐴 ) ) = ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) |
| 46 | 43 45 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( 𝐹 ‘ ( 𝑂 ‘ 𝐴 ) ) = ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ) |
| 47 | 0zd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → 0 ∈ ℤ ) | |
| 48 | oveq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 · 𝐴 ) = ( 0 · 𝐴 ) ) | |
| 49 | 48 4 11 | fvmpt3i | ⊢ ( 0 ∈ ℤ → ( 𝐹 ‘ 0 ) = ( 0 · 𝐴 ) ) |
| 50 | 47 49 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( 𝐹 ‘ 0 ) = ( 0 · 𝐴 ) ) |
| 51 | 40 46 50 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( 𝐹 ‘ ( 𝑂 ‘ 𝐴 ) ) = ( 𝐹 ‘ 0 ) ) |
| 52 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → 𝐹 : ℤ –1-1→ 𝑋 ) | |
| 53 | f1fveq | ⊢ ( ( 𝐹 : ℤ –1-1→ 𝑋 ∧ ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ 0 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝑂 ‘ 𝐴 ) ) = ( 𝐹 ‘ 0 ) ↔ ( 𝑂 ‘ 𝐴 ) = 0 ) ) | |
| 54 | 52 43 47 53 | syl12anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( ( 𝐹 ‘ ( 𝑂 ‘ 𝐴 ) ) = ( 𝐹 ‘ 0 ) ↔ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 55 | 51 54 | mpbid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐹 : ℤ –1-1→ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = 0 ) |
| 56 | 36 55 | impbida | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 ↔ 𝐹 : ℤ –1-1→ 𝑋 ) ) |