This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality in terms of unit ratio. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | diveq1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = 1 <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | divmul2 | |- ( ( A e. CC /\ 1 e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = 1 <-> A = ( B x. 1 ) ) ) |
|
| 3 | 1 2 | mp3an2 | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = 1 <-> A = ( B x. 1 ) ) ) |
| 4 | 3 | 3impb | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = 1 <-> A = ( B x. 1 ) ) ) |
| 5 | simp2 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B e. CC ) |
|
| 6 | 5 | mulridd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. 1 ) = B ) |
| 7 | 6 | eqeq2d | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A = ( B x. 1 ) <-> A = B ) ) |
| 8 | 4 7 | bitrd | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = 1 <-> A = B ) ) |