This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndivides | |- ( ( M e. NN /\ N e. NN ) -> ( M || N <-> E. n e. NN ( n x. M ) = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nndiv | |- ( ( M e. NN /\ N e. NN ) -> ( E. n e. NN ( M x. n ) = N <-> ( N / M ) e. NN ) ) |
|
| 2 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 3 | 2 | adantl | |- ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) -> n e. CC ) |
| 4 | nncn | |- ( M e. NN -> M e. CC ) |
|
| 5 | 4 | ad2antrr | |- ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) -> M e. CC ) |
| 6 | 3 5 | mulcomd | |- ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) -> ( n x. M ) = ( M x. n ) ) |
| 7 | 6 | eqeq1d | |- ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) -> ( ( n x. M ) = N <-> ( M x. n ) = N ) ) |
| 8 | 7 | rexbidva | |- ( ( M e. NN /\ N e. NN ) -> ( E. n e. NN ( n x. M ) = N <-> E. n e. NN ( M x. n ) = N ) ) |
| 9 | nndivdvds | |- ( ( N e. NN /\ M e. NN ) -> ( M || N <-> ( N / M ) e. NN ) ) |
|
| 10 | 9 | ancoms | |- ( ( M e. NN /\ N e. NN ) -> ( M || N <-> ( N / M ) e. NN ) ) |
| 11 | 1 8 10 | 3bitr4rd | |- ( ( M e. NN /\ N e. NN ) -> ( M || N <-> E. n e. NN ( n x. M ) = N ) ) |