This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015) Avoid axioms. (Revised by SN, 14-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexss | |- ( A C_ B -> ( E. x e. A ph <-> E. x e. B ( x e. A /\ ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 2 | pm3.41 | |- ( ( x e. A -> x e. B ) -> ( ( x e. A /\ ph ) -> x e. B ) ) |
|
| 3 | 2 | pm4.71rd | |- ( ( x e. A -> x e. B ) -> ( ( x e. A /\ ph ) <-> ( x e. B /\ ( x e. A /\ ph ) ) ) ) |
| 4 | 3 | alexbii | |- ( A. x ( x e. A -> x e. B ) -> ( E. x ( x e. A /\ ph ) <-> E. x ( x e. B /\ ( x e. A /\ ph ) ) ) ) |
| 5 | 1 4 | sylbi | |- ( A C_ B -> ( E. x ( x e. A /\ ph ) <-> E. x ( x e. B /\ ( x e. A /\ ph ) ) ) ) |
| 6 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
| 7 | df-rex | |- ( E. x e. B ( x e. A /\ ph ) <-> E. x ( x e. B /\ ( x e. A /\ ph ) ) ) |
|
| 8 | 5 6 7 | 3bitr4g | |- ( A C_ B -> ( E. x e. A ph <-> E. x e. B ( x e. A /\ ph ) ) ) |