This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem nnssnn0

Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Assertion nnssnn0
|- NN C_ NN0

Proof

Step Hyp Ref Expression
1 ssun1
 |-  NN C_ ( NN u. { 0 } )
2 df-n0
 |-  NN0 = ( NN u. { 0 } )
3 1 2 sseqtrri
 |-  NN C_ NN0