This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | evennn02n | |- ( N e. NN0 -> ( 2 || N <-> E. n e. NN0 ( 2 x. n ) = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( ( 2 x. n ) = N -> ( ( 2 x. n ) e. NN0 <-> N e. NN0 ) ) |
|
| 2 | simpr | |- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> n e. ZZ ) |
|
| 3 | 2rp | |- 2 e. RR+ |
|
| 4 | 3 | a1i | |- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> 2 e. RR+ ) |
| 5 | zre | |- ( n e. ZZ -> n e. RR ) |
|
| 6 | 5 | adantl | |- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> n e. RR ) |
| 7 | nn0ge0 | |- ( ( 2 x. n ) e. NN0 -> 0 <_ ( 2 x. n ) ) |
|
| 8 | 7 | adantr | |- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> 0 <_ ( 2 x. n ) ) |
| 9 | 4 6 8 | prodge0rd | |- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> 0 <_ n ) |
| 10 | elnn0z | |- ( n e. NN0 <-> ( n e. ZZ /\ 0 <_ n ) ) |
|
| 11 | 2 9 10 | sylanbrc | |- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> n e. NN0 ) |
| 12 | 11 | ex | |- ( ( 2 x. n ) e. NN0 -> ( n e. ZZ -> n e. NN0 ) ) |
| 13 | 1 12 | biimtrrdi | |- ( ( 2 x. n ) = N -> ( N e. NN0 -> ( n e. ZZ -> n e. NN0 ) ) ) |
| 14 | 13 | com13 | |- ( n e. ZZ -> ( N e. NN0 -> ( ( 2 x. n ) = N -> n e. NN0 ) ) ) |
| 15 | 14 | impcom | |- ( ( N e. NN0 /\ n e. ZZ ) -> ( ( 2 x. n ) = N -> n e. NN0 ) ) |
| 16 | 15 | pm4.71rd | |- ( ( N e. NN0 /\ n e. ZZ ) -> ( ( 2 x. n ) = N <-> ( n e. NN0 /\ ( 2 x. n ) = N ) ) ) |
| 17 | 16 | bicomd | |- ( ( N e. NN0 /\ n e. ZZ ) -> ( ( n e. NN0 /\ ( 2 x. n ) = N ) <-> ( 2 x. n ) = N ) ) |
| 18 | 17 | rexbidva | |- ( N e. NN0 -> ( E. n e. ZZ ( n e. NN0 /\ ( 2 x. n ) = N ) <-> E. n e. ZZ ( 2 x. n ) = N ) ) |
| 19 | nn0ssz | |- NN0 C_ ZZ |
|
| 20 | rexss | |- ( NN0 C_ ZZ -> ( E. n e. NN0 ( 2 x. n ) = N <-> E. n e. ZZ ( n e. NN0 /\ ( 2 x. n ) = N ) ) ) |
|
| 21 | 19 20 | mp1i | |- ( N e. NN0 -> ( E. n e. NN0 ( 2 x. n ) = N <-> E. n e. ZZ ( n e. NN0 /\ ( 2 x. n ) = N ) ) ) |
| 22 | even2n | |- ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) |
|
| 23 | 22 | a1i | |- ( N e. NN0 -> ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) ) |
| 24 | 18 21 23 | 3bitr4rd | |- ( N e. NN0 -> ( 2 || N <-> E. n e. NN0 ( 2 x. n ) = N ) ) |