This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimi.1 | |- ( ph -> A. z e. A B e. V ) |
|
| rlimi.2 | |- ( ph -> R e. RR+ ) |
||
| rlimi.3 | |- ( ph -> ( z e. A |-> B ) ~~>r C ) |
||
| Assertion | rlimi | |- ( ph -> E. y e. RR A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimi.1 | |- ( ph -> A. z e. A B e. V ) |
|
| 2 | rlimi.2 | |- ( ph -> R e. RR+ ) |
|
| 3 | rlimi.3 | |- ( ph -> ( z e. A |-> B ) ~~>r C ) |
|
| 4 | breq2 | |- ( x = R -> ( ( abs ` ( B - C ) ) < x <-> ( abs ` ( B - C ) ) < R ) ) |
|
| 5 | 4 | imbi2d | |- ( x = R -> ( ( y <_ z -> ( abs ` ( B - C ) ) < x ) <-> ( y <_ z -> ( abs ` ( B - C ) ) < R ) ) ) |
| 6 | 5 | rexralbidv | |- ( x = R -> ( E. y e. RR A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < x ) <-> E. y e. RR A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < R ) ) ) |
| 7 | rlimf | |- ( ( z e. A |-> B ) ~~>r C -> ( z e. A |-> B ) : dom ( z e. A |-> B ) --> CC ) |
|
| 8 | 3 7 | syl | |- ( ph -> ( z e. A |-> B ) : dom ( z e. A |-> B ) --> CC ) |
| 9 | eqid | |- ( z e. A |-> B ) = ( z e. A |-> B ) |
|
| 10 | 9 | fmpt | |- ( A. z e. A B e. V <-> ( z e. A |-> B ) : A --> V ) |
| 11 | 1 10 | sylib | |- ( ph -> ( z e. A |-> B ) : A --> V ) |
| 12 | 11 | fdmd | |- ( ph -> dom ( z e. A |-> B ) = A ) |
| 13 | 12 | feq2d | |- ( ph -> ( ( z e. A |-> B ) : dom ( z e. A |-> B ) --> CC <-> ( z e. A |-> B ) : A --> CC ) ) |
| 14 | 8 13 | mpbid | |- ( ph -> ( z e. A |-> B ) : A --> CC ) |
| 15 | 9 | fmpt | |- ( A. z e. A B e. CC <-> ( z e. A |-> B ) : A --> CC ) |
| 16 | 14 15 | sylibr | |- ( ph -> A. z e. A B e. CC ) |
| 17 | rlimss | |- ( ( z e. A |-> B ) ~~>r C -> dom ( z e. A |-> B ) C_ RR ) |
|
| 18 | 3 17 | syl | |- ( ph -> dom ( z e. A |-> B ) C_ RR ) |
| 19 | 12 18 | eqsstrrd | |- ( ph -> A C_ RR ) |
| 20 | rlimcl | |- ( ( z e. A |-> B ) ~~>r C -> C e. CC ) |
|
| 21 | 3 20 | syl | |- ( ph -> C e. CC ) |
| 22 | 16 19 21 | rlim2 | |- ( ph -> ( ( z e. A |-> B ) ~~>r C <-> A. x e. RR+ E. y e. RR A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < x ) ) ) |
| 23 | 3 22 | mpbid | |- ( ph -> A. x e. RR+ E. y e. RR A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < x ) ) |
| 24 | 6 23 2 | rspcdva | |- ( ph -> E. y e. RR A. z e. A ( y <_ z -> ( abs ` ( B - C ) ) < R ) ) |