This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A tail of a non-trivially convergent sequence converges non-trivially. (Contributed by Scott Fenton, 20-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrivcvgtail.1 | |- Z = ( ZZ>= ` M ) |
|
| ntrivcvgtail.2 | |- ( ph -> N e. Z ) |
||
| ntrivcvgtail.3 | |- ( ph -> seq M ( x. , F ) ~~> X ) |
||
| ntrivcvgtail.4 | |- ( ph -> X =/= 0 ) |
||
| ntrivcvgtail.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| Assertion | ntrivcvgtail | |- ( ph -> ( ( ~~> ` seq N ( x. , F ) ) =/= 0 /\ seq N ( x. , F ) ~~> ( ~~> ` seq N ( x. , F ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgtail.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | ntrivcvgtail.2 | |- ( ph -> N e. Z ) |
|
| 3 | ntrivcvgtail.3 | |- ( ph -> seq M ( x. , F ) ~~> X ) |
|
| 4 | ntrivcvgtail.4 | |- ( ph -> X =/= 0 ) |
|
| 5 | ntrivcvgtail.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 6 | fclim | |- ~~> : dom ~~> --> CC |
|
| 7 | ffun | |- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
|
| 8 | 6 7 | ax-mp | |- Fun ~~> |
| 9 | funbrfv | |- ( Fun ~~> -> ( seq M ( x. , F ) ~~> X -> ( ~~> ` seq M ( x. , F ) ) = X ) ) |
|
| 10 | 8 3 9 | mpsyl | |- ( ph -> ( ~~> ` seq M ( x. , F ) ) = X ) |
| 11 | 10 4 | eqnetrd | |- ( ph -> ( ~~> ` seq M ( x. , F ) ) =/= 0 ) |
| 12 | 3 10 | breqtrrd | |- ( ph -> seq M ( x. , F ) ~~> ( ~~> ` seq M ( x. , F ) ) ) |
| 13 | 11 12 | jca | |- ( ph -> ( ( ~~> ` seq M ( x. , F ) ) =/= 0 /\ seq M ( x. , F ) ~~> ( ~~> ` seq M ( x. , F ) ) ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ N = M ) -> ( ( ~~> ` seq M ( x. , F ) ) =/= 0 /\ seq M ( x. , F ) ~~> ( ~~> ` seq M ( x. , F ) ) ) ) |
| 15 | seqeq1 | |- ( N = M -> seq N ( x. , F ) = seq M ( x. , F ) ) |
|
| 16 | 15 | fveq2d | |- ( N = M -> ( ~~> ` seq N ( x. , F ) ) = ( ~~> ` seq M ( x. , F ) ) ) |
| 17 | 16 | neeq1d | |- ( N = M -> ( ( ~~> ` seq N ( x. , F ) ) =/= 0 <-> ( ~~> ` seq M ( x. , F ) ) =/= 0 ) ) |
| 18 | 15 16 | breq12d | |- ( N = M -> ( seq N ( x. , F ) ~~> ( ~~> ` seq N ( x. , F ) ) <-> seq M ( x. , F ) ~~> ( ~~> ` seq M ( x. , F ) ) ) ) |
| 19 | 17 18 | anbi12d | |- ( N = M -> ( ( ( ~~> ` seq N ( x. , F ) ) =/= 0 /\ seq N ( x. , F ) ~~> ( ~~> ` seq N ( x. , F ) ) ) <-> ( ( ~~> ` seq M ( x. , F ) ) =/= 0 /\ seq M ( x. , F ) ~~> ( ~~> ` seq M ( x. , F ) ) ) ) ) |
| 20 | 19 | adantl | |- ( ( ph /\ N = M ) -> ( ( ( ~~> ` seq N ( x. , F ) ) =/= 0 /\ seq N ( x. , F ) ~~> ( ~~> ` seq N ( x. , F ) ) ) <-> ( ( ~~> ` seq M ( x. , F ) ) =/= 0 /\ seq M ( x. , F ) ~~> ( ~~> ` seq M ( x. , F ) ) ) ) ) |
| 21 | 14 20 | mpbird | |- ( ( ph /\ N = M ) -> ( ( ~~> ` seq N ( x. , F ) ) =/= 0 /\ seq N ( x. , F ) ~~> ( ~~> ` seq N ( x. , F ) ) ) ) |
| 22 | simpr | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
|
| 23 | 22 1 | eleqtrrdi | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( N - 1 ) e. Z ) |
| 24 | 5 | adantlr | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 25 | 3 | adantr | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> seq M ( x. , F ) ~~> X ) |
| 26 | 4 | adantr | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> X =/= 0 ) |
| 27 | 1 23 25 26 24 | ntrivcvgfvn0 | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( seq M ( x. , F ) ` ( N - 1 ) ) =/= 0 ) |
| 28 | 1 23 24 25 27 | clim2div | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> seq ( ( N - 1 ) + 1 ) ( x. , F ) ~~> ( X / ( seq M ( x. , F ) ` ( N - 1 ) ) ) ) |
| 29 | funbrfv | |- ( Fun ~~> -> ( seq ( ( N - 1 ) + 1 ) ( x. , F ) ~~> ( X / ( seq M ( x. , F ) ` ( N - 1 ) ) ) -> ( ~~> ` seq ( ( N - 1 ) + 1 ) ( x. , F ) ) = ( X / ( seq M ( x. , F ) ` ( N - 1 ) ) ) ) ) |
|
| 30 | 8 28 29 | mpsyl | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ~~> ` seq ( ( N - 1 ) + 1 ) ( x. , F ) ) = ( X / ( seq M ( x. , F ) ` ( N - 1 ) ) ) ) |
| 31 | climcl | |- ( seq M ( x. , F ) ~~> X -> X e. CC ) |
|
| 32 | 3 31 | syl | |- ( ph -> X e. CC ) |
| 33 | 32 | adantr | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> X e. CC ) |
| 34 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 35 | 34 1 | eleq2s | |- ( N e. Z -> M e. ZZ ) |
| 36 | 2 35 | syl | |- ( ph -> M e. ZZ ) |
| 37 | 1 36 5 | prodf | |- ( ph -> seq M ( x. , F ) : Z --> CC ) |
| 38 | 1 | feq2i | |- ( seq M ( x. , F ) : Z --> CC <-> seq M ( x. , F ) : ( ZZ>= ` M ) --> CC ) |
| 39 | 37 38 | sylib | |- ( ph -> seq M ( x. , F ) : ( ZZ>= ` M ) --> CC ) |
| 40 | 39 | ffvelcdmda | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( seq M ( x. , F ) ` ( N - 1 ) ) e. CC ) |
| 41 | 33 40 26 27 | divne0d | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( X / ( seq M ( x. , F ) ` ( N - 1 ) ) ) =/= 0 ) |
| 42 | 30 41 | eqnetrd | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ~~> ` seq ( ( N - 1 ) + 1 ) ( x. , F ) ) =/= 0 ) |
| 43 | 28 30 | breqtrrd | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> seq ( ( N - 1 ) + 1 ) ( x. , F ) ~~> ( ~~> ` seq ( ( N - 1 ) + 1 ) ( x. , F ) ) ) |
| 44 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 45 | 1 44 | eqsstri | |- Z C_ ZZ |
| 46 | 45 2 | sselid | |- ( ph -> N e. ZZ ) |
| 47 | 46 | zcnd | |- ( ph -> N e. CC ) |
| 48 | 47 | adantr | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> N e. CC ) |
| 49 | 1cnd | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> 1 e. CC ) |
|
| 50 | 48 49 | npcand | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 51 | 50 | seqeq1d | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> seq ( ( N - 1 ) + 1 ) ( x. , F ) = seq N ( x. , F ) ) |
| 52 | 51 | fveq2d | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ~~> ` seq ( ( N - 1 ) + 1 ) ( x. , F ) ) = ( ~~> ` seq N ( x. , F ) ) ) |
| 53 | 52 | neeq1d | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ( ~~> ` seq ( ( N - 1 ) + 1 ) ( x. , F ) ) =/= 0 <-> ( ~~> ` seq N ( x. , F ) ) =/= 0 ) ) |
| 54 | 51 52 | breq12d | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( seq ( ( N - 1 ) + 1 ) ( x. , F ) ~~> ( ~~> ` seq ( ( N - 1 ) + 1 ) ( x. , F ) ) <-> seq N ( x. , F ) ~~> ( ~~> ` seq N ( x. , F ) ) ) ) |
| 55 | 53 54 | anbi12d | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ( ( ~~> ` seq ( ( N - 1 ) + 1 ) ( x. , F ) ) =/= 0 /\ seq ( ( N - 1 ) + 1 ) ( x. , F ) ~~> ( ~~> ` seq ( ( N - 1 ) + 1 ) ( x. , F ) ) ) <-> ( ( ~~> ` seq N ( x. , F ) ) =/= 0 /\ seq N ( x. , F ) ~~> ( ~~> ` seq N ( x. , F ) ) ) ) ) |
| 56 | 42 43 55 | mpbi2and | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ( ~~> ` seq N ( x. , F ) ) =/= 0 /\ seq N ( x. , F ) ~~> ( ~~> ` seq N ( x. , F ) ) ) ) |
| 57 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 58 | uzm1 | |- ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
|
| 59 | 57 58 | syl | |- ( ph -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
| 60 | 21 56 59 | mpjaodan | |- ( ph -> ( ( ~~> ` seq N ( x. , F ) ) =/= 0 /\ seq N ( x. , F ) ~~> ( ~~> ` seq N ( x. , F ) ) ) ) |