This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2div.1 | |- Z = ( ZZ>= ` M ) |
|
| clim2div.2 | |- ( ph -> N e. Z ) |
||
| clim2div.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| clim2div.4 | |- ( ph -> seq M ( x. , F ) ~~> A ) |
||
| clim2div.5 | |- ( ph -> ( seq M ( x. , F ) ` N ) =/= 0 ) |
||
| Assertion | clim2div | |- ( ph -> seq ( N + 1 ) ( x. , F ) ~~> ( A / ( seq M ( x. , F ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2div.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | clim2div.2 | |- ( ph -> N e. Z ) |
|
| 3 | clim2div.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 4 | clim2div.4 | |- ( ph -> seq M ( x. , F ) ~~> A ) |
|
| 5 | clim2div.5 | |- ( ph -> ( seq M ( x. , F ) ` N ) =/= 0 ) |
|
| 6 | eqid | |- ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) |
|
| 7 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 8 | 7 1 | eleq2s | |- ( N e. Z -> N e. ZZ ) |
| 9 | 2 8 | syl | |- ( ph -> N e. ZZ ) |
| 10 | 9 | peano2zd | |- ( ph -> ( N + 1 ) e. ZZ ) |
| 11 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 12 | 11 1 | eleq2s | |- ( N e. Z -> M e. ZZ ) |
| 13 | 2 12 | syl | |- ( ph -> M e. ZZ ) |
| 14 | 1 13 3 | prodf | |- ( ph -> seq M ( x. , F ) : Z --> CC ) |
| 15 | 14 2 | ffvelcdmd | |- ( ph -> ( seq M ( x. , F ) ` N ) e. CC ) |
| 16 | 15 5 | reccld | |- ( ph -> ( 1 / ( seq M ( x. , F ) ` N ) ) e. CC ) |
| 17 | seqex | |- seq ( N + 1 ) ( x. , F ) e. _V |
|
| 18 | 17 | a1i | |- ( ph -> seq ( N + 1 ) ( x. , F ) e. _V ) |
| 19 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 20 | peano2uz | |- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
|
| 21 | 19 20 | syl | |- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 22 | 21 1 | eleqtrrdi | |- ( ph -> ( N + 1 ) e. Z ) |
| 23 | 1 | uztrn2 | |- ( ( ( N + 1 ) e. Z /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. Z ) |
| 24 | 22 23 | sylan | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. Z ) |
| 25 | 14 | ffvelcdmda | |- ( ( ph /\ j e. Z ) -> ( seq M ( x. , F ) ` j ) e. CC ) |
| 26 | 24 25 | syldan | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` j ) e. CC ) |
| 27 | mulcl | |- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
|
| 28 | 27 | adantl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 29 | mulass | |- ( ( k e. CC /\ x e. CC /\ y e. CC ) -> ( ( k x. x ) x. y ) = ( k x. ( x x. y ) ) ) |
|
| 30 | 29 | adantl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( k e. CC /\ x e. CC /\ y e. CC ) ) -> ( ( k x. x ) x. y ) = ( k x. ( x x. y ) ) ) |
| 31 | simpr | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. ( ZZ>= ` ( N + 1 ) ) ) |
|
| 32 | 19 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> N e. ( ZZ>= ` M ) ) |
| 33 | elfzuz | |- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
|
| 34 | 33 1 | eleqtrrdi | |- ( k e. ( M ... j ) -> k e. Z ) |
| 35 | 34 3 | sylan2 | |- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 36 | 35 | adantlr | |- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 37 | 28 30 31 32 36 | seqsplit | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` j ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` j ) ) ) |
| 38 | 37 | eqcomd | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` j ) ) = ( seq M ( x. , F ) ` j ) ) |
| 39 | 15 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` N ) e. CC ) |
| 40 | 1 | uztrn2 | |- ( ( ( N + 1 ) e. Z /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
| 41 | 22 40 | sylan | |- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
| 42 | 41 3 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` k ) e. CC ) |
| 43 | 6 10 42 | prodf | |- ( ph -> seq ( N + 1 ) ( x. , F ) : ( ZZ>= ` ( N + 1 ) ) --> CC ) |
| 44 | 43 | ffvelcdmda | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` j ) e. CC ) |
| 45 | 5 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` N ) =/= 0 ) |
| 46 | 26 39 44 45 | divmuld | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( ( seq M ( x. , F ) ` j ) / ( seq M ( x. , F ) ` N ) ) = ( seq ( N + 1 ) ( x. , F ) ` j ) <-> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` j ) ) = ( seq M ( x. , F ) ` j ) ) ) |
| 47 | 38 46 | mpbird | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( seq M ( x. , F ) ` j ) / ( seq M ( x. , F ) ` N ) ) = ( seq ( N + 1 ) ( x. , F ) ` j ) ) |
| 48 | 26 39 45 | divrec2d | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( seq M ( x. , F ) ` j ) / ( seq M ( x. , F ) ` N ) ) = ( ( 1 / ( seq M ( x. , F ) ` N ) ) x. ( seq M ( x. , F ) ` j ) ) ) |
| 49 | 47 48 | eqtr3d | |- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` j ) = ( ( 1 / ( seq M ( x. , F ) ` N ) ) x. ( seq M ( x. , F ) ` j ) ) ) |
| 50 | 6 10 4 16 18 26 49 | climmulc2 | |- ( ph -> seq ( N + 1 ) ( x. , F ) ~~> ( ( 1 / ( seq M ( x. , F ) ` N ) ) x. A ) ) |
| 51 | climcl | |- ( seq M ( x. , F ) ~~> A -> A e. CC ) |
|
| 52 | 4 51 | syl | |- ( ph -> A e. CC ) |
| 53 | 52 15 5 | divrec2d | |- ( ph -> ( A / ( seq M ( x. , F ) ` N ) ) = ( ( 1 / ( seq M ( x. , F ) ` N ) ) x. A ) ) |
| 54 | 50 53 | breqtrrd | |- ( ph -> seq ( N + 1 ) ( x. , F ) ~~> ( A / ( seq M ( x. , F ) ` N ) ) ) |