This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ntrivcvgmul . (Contributed by Scott Fenton, 19-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrivcvgmullem.1 | |- Z = ( ZZ>= ` M ) |
|
| ntrivcvgmullem.2 | |- ( ph -> N e. Z ) |
||
| ntrivcvgmullem.3 | |- ( ph -> P e. Z ) |
||
| ntrivcvgmullem.4 | |- ( ph -> X =/= 0 ) |
||
| ntrivcvgmullem.5 | |- ( ph -> Y =/= 0 ) |
||
| ntrivcvgmullem.6 | |- ( ph -> seq N ( x. , F ) ~~> X ) |
||
| ntrivcvgmullem.7 | |- ( ph -> seq P ( x. , G ) ~~> Y ) |
||
| ntrivcvgmullem.8 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| ntrivcvgmullem.9 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
||
| ntrivcvgmullem.a | |- ( ph -> N <_ P ) |
||
| ntrivcvgmullem.b | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
||
| Assertion | ntrivcvgmullem | |- ( ph -> E. q e. Z E. w ( w =/= 0 /\ seq q ( x. , H ) ~~> w ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgmullem.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | ntrivcvgmullem.2 | |- ( ph -> N e. Z ) |
|
| 3 | ntrivcvgmullem.3 | |- ( ph -> P e. Z ) |
|
| 4 | ntrivcvgmullem.4 | |- ( ph -> X =/= 0 ) |
|
| 5 | ntrivcvgmullem.5 | |- ( ph -> Y =/= 0 ) |
|
| 6 | ntrivcvgmullem.6 | |- ( ph -> seq N ( x. , F ) ~~> X ) |
|
| 7 | ntrivcvgmullem.7 | |- ( ph -> seq P ( x. , G ) ~~> Y ) |
|
| 8 | ntrivcvgmullem.8 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 9 | ntrivcvgmullem.9 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
|
| 10 | ntrivcvgmullem.a | |- ( ph -> N <_ P ) |
|
| 11 | ntrivcvgmullem.b | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
|
| 12 | eqid | |- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
|
| 13 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 14 | 1 13 | eqsstri | |- Z C_ ZZ |
| 15 | 14 2 | sselid | |- ( ph -> N e. ZZ ) |
| 16 | 14 3 | sselid | |- ( ph -> P e. ZZ ) |
| 17 | eluz | |- ( ( N e. ZZ /\ P e. ZZ ) -> ( P e. ( ZZ>= ` N ) <-> N <_ P ) ) |
|
| 18 | 15 16 17 | syl2anc | |- ( ph -> ( P e. ( ZZ>= ` N ) <-> N <_ P ) ) |
| 19 | 10 18 | mpbird | |- ( ph -> P e. ( ZZ>= ` N ) ) |
| 20 | 1 | uztrn2 | |- ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 21 | 2 20 | sylan | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 22 | 21 8 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) e. CC ) |
| 23 | 12 19 6 4 22 | ntrivcvgtail | |- ( ph -> ( ( ~~> ` seq P ( x. , F ) ) =/= 0 /\ seq P ( x. , F ) ~~> ( ~~> ` seq P ( x. , F ) ) ) ) |
| 24 | 23 | simprd | |- ( ph -> seq P ( x. , F ) ~~> ( ~~> ` seq P ( x. , F ) ) ) |
| 25 | climcl | |- ( seq P ( x. , F ) ~~> ( ~~> ` seq P ( x. , F ) ) -> ( ~~> ` seq P ( x. , F ) ) e. CC ) |
|
| 26 | 24 25 | syl | |- ( ph -> ( ~~> ` seq P ( x. , F ) ) e. CC ) |
| 27 | climcl | |- ( seq P ( x. , G ) ~~> Y -> Y e. CC ) |
|
| 28 | 7 27 | syl | |- ( ph -> Y e. CC ) |
| 29 | 23 | simpld | |- ( ph -> ( ~~> ` seq P ( x. , F ) ) =/= 0 ) |
| 30 | 26 28 29 5 | mulne0d | |- ( ph -> ( ( ~~> ` seq P ( x. , F ) ) x. Y ) =/= 0 ) |
| 31 | eqid | |- ( ZZ>= ` P ) = ( ZZ>= ` P ) |
|
| 32 | seqex | |- seq P ( x. , H ) e. _V |
|
| 33 | 32 | a1i | |- ( ph -> seq P ( x. , H ) e. _V ) |
| 34 | 1 | uztrn2 | |- ( ( P e. Z /\ k e. ( ZZ>= ` P ) ) -> k e. Z ) |
| 35 | 3 34 | sylan | |- ( ( ph /\ k e. ( ZZ>= ` P ) ) -> k e. Z ) |
| 36 | 35 8 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` P ) ) -> ( F ` k ) e. CC ) |
| 37 | 31 16 36 | prodf | |- ( ph -> seq P ( x. , F ) : ( ZZ>= ` P ) --> CC ) |
| 38 | 37 | ffvelcdmda | |- ( ( ph /\ j e. ( ZZ>= ` P ) ) -> ( seq P ( x. , F ) ` j ) e. CC ) |
| 39 | 35 9 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` P ) ) -> ( G ` k ) e. CC ) |
| 40 | 31 16 39 | prodf | |- ( ph -> seq P ( x. , G ) : ( ZZ>= ` P ) --> CC ) |
| 41 | 40 | ffvelcdmda | |- ( ( ph /\ j e. ( ZZ>= ` P ) ) -> ( seq P ( x. , G ) ` j ) e. CC ) |
| 42 | simpr | |- ( ( ph /\ j e. ( ZZ>= ` P ) ) -> j e. ( ZZ>= ` P ) ) |
|
| 43 | simpll | |- ( ( ( ph /\ j e. ( ZZ>= ` P ) ) /\ k e. ( P ... j ) ) -> ph ) |
|
| 44 | 3 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` P ) ) -> P e. Z ) |
| 45 | elfzuz | |- ( k e. ( P ... j ) -> k e. ( ZZ>= ` P ) ) |
|
| 46 | 44 45 34 | syl2an | |- ( ( ( ph /\ j e. ( ZZ>= ` P ) ) /\ k e. ( P ... j ) ) -> k e. Z ) |
| 47 | 43 46 8 | syl2anc | |- ( ( ( ph /\ j e. ( ZZ>= ` P ) ) /\ k e. ( P ... j ) ) -> ( F ` k ) e. CC ) |
| 48 | 43 46 9 | syl2anc | |- ( ( ( ph /\ j e. ( ZZ>= ` P ) ) /\ k e. ( P ... j ) ) -> ( G ` k ) e. CC ) |
| 49 | 43 46 11 | syl2anc | |- ( ( ( ph /\ j e. ( ZZ>= ` P ) ) /\ k e. ( P ... j ) ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) ) |
| 50 | 42 47 48 49 | prodfmul | |- ( ( ph /\ j e. ( ZZ>= ` P ) ) -> ( seq P ( x. , H ) ` j ) = ( ( seq P ( x. , F ) ` j ) x. ( seq P ( x. , G ) ` j ) ) ) |
| 51 | 31 16 24 33 7 38 41 50 | climmul | |- ( ph -> seq P ( x. , H ) ~~> ( ( ~~> ` seq P ( x. , F ) ) x. Y ) ) |
| 52 | ovex | |- ( ( ~~> ` seq P ( x. , F ) ) x. Y ) e. _V |
|
| 53 | neeq1 | |- ( w = ( ( ~~> ` seq P ( x. , F ) ) x. Y ) -> ( w =/= 0 <-> ( ( ~~> ` seq P ( x. , F ) ) x. Y ) =/= 0 ) ) |
|
| 54 | breq2 | |- ( w = ( ( ~~> ` seq P ( x. , F ) ) x. Y ) -> ( seq P ( x. , H ) ~~> w <-> seq P ( x. , H ) ~~> ( ( ~~> ` seq P ( x. , F ) ) x. Y ) ) ) |
|
| 55 | 53 54 | anbi12d | |- ( w = ( ( ~~> ` seq P ( x. , F ) ) x. Y ) -> ( ( w =/= 0 /\ seq P ( x. , H ) ~~> w ) <-> ( ( ( ~~> ` seq P ( x. , F ) ) x. Y ) =/= 0 /\ seq P ( x. , H ) ~~> ( ( ~~> ` seq P ( x. , F ) ) x. Y ) ) ) ) |
| 56 | 52 55 | spcev | |- ( ( ( ( ~~> ` seq P ( x. , F ) ) x. Y ) =/= 0 /\ seq P ( x. , H ) ~~> ( ( ~~> ` seq P ( x. , F ) ) x. Y ) ) -> E. w ( w =/= 0 /\ seq P ( x. , H ) ~~> w ) ) |
| 57 | 30 51 56 | syl2anc | |- ( ph -> E. w ( w =/= 0 /\ seq P ( x. , H ) ~~> w ) ) |
| 58 | seqeq1 | |- ( q = P -> seq q ( x. , H ) = seq P ( x. , H ) ) |
|
| 59 | 58 | breq1d | |- ( q = P -> ( seq q ( x. , H ) ~~> w <-> seq P ( x. , H ) ~~> w ) ) |
| 60 | 59 | anbi2d | |- ( q = P -> ( ( w =/= 0 /\ seq q ( x. , H ) ~~> w ) <-> ( w =/= 0 /\ seq P ( x. , H ) ~~> w ) ) ) |
| 61 | 60 | exbidv | |- ( q = P -> ( E. w ( w =/= 0 /\ seq q ( x. , H ) ~~> w ) <-> E. w ( w =/= 0 /\ seq P ( x. , H ) ~~> w ) ) ) |
| 62 | 61 | rspcev | |- ( ( P e. Z /\ E. w ( w =/= 0 /\ seq P ( x. , H ) ~~> w ) ) -> E. q e. Z E. w ( w =/= 0 /\ seq q ( x. , H ) ~~> w ) ) |
| 63 | 3 57 62 | syl2anc | |- ( ph -> E. q e. Z E. w ( w =/= 0 /\ seq q ( x. , H ) ~~> w ) ) |