This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element { 0 } . (Contributed by Mario Carneiro, 10-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ring1eq0.b | |- B = ( Base ` R ) |
|
| ring1eq0.u | |- .1. = ( 1r ` R ) |
||
| ring1eq0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | ring1eq0 | |- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( .1. = .0. -> X = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ring1eq0.b | |- B = ( Base ` R ) |
|
| 2 | ring1eq0.u | |- .1. = ( 1r ` R ) |
|
| 3 | ring1eq0.z | |- .0. = ( 0g ` R ) |
|
| 4 | simpr | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> .1. = .0. ) |
|
| 5 | 4 | oveq1d | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) X ) = ( .0. ( .r ` R ) X ) ) |
| 6 | 4 | oveq1d | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) Y ) = ( .0. ( .r ` R ) Y ) ) |
| 7 | simpl1 | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> R e. Ring ) |
|
| 8 | simpl2 | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> X e. B ) |
|
| 9 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 10 | 1 9 3 | ringlz | |- ( ( R e. Ring /\ X e. B ) -> ( .0. ( .r ` R ) X ) = .0. ) |
| 11 | 7 8 10 | syl2anc | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .0. ( .r ` R ) X ) = .0. ) |
| 12 | simpl3 | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> Y e. B ) |
|
| 13 | 1 9 3 | ringlz | |- ( ( R e. Ring /\ Y e. B ) -> ( .0. ( .r ` R ) Y ) = .0. ) |
| 14 | 7 12 13 | syl2anc | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .0. ( .r ` R ) Y ) = .0. ) |
| 15 | 11 14 | eqtr4d | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .0. ( .r ` R ) X ) = ( .0. ( .r ` R ) Y ) ) |
| 16 | 6 15 | eqtr4d | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) Y ) = ( .0. ( .r ` R ) X ) ) |
| 17 | 5 16 | eqtr4d | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) X ) = ( .1. ( .r ` R ) Y ) ) |
| 18 | 1 9 2 | ringlidm | |- ( ( R e. Ring /\ X e. B ) -> ( .1. ( .r ` R ) X ) = X ) |
| 19 | 7 8 18 | syl2anc | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) X ) = X ) |
| 20 | 1 9 2 | ringlidm | |- ( ( R e. Ring /\ Y e. B ) -> ( .1. ( .r ` R ) Y ) = Y ) |
| 21 | 7 12 20 | syl2anc | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> ( .1. ( .r ` R ) Y ) = Y ) |
| 22 | 17 19 21 | 3eqtr3d | |- ( ( ( R e. Ring /\ X e. B /\ Y e. B ) /\ .1. = .0. ) -> X = Y ) |
| 23 | 22 | ex | |- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( .1. = .0. -> X = Y ) ) |