This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say a mapping from metric C to metric D is continuous. Theorem 10.1 of Munkres p. 127. The second biconditional argument says that for every positive "epsilon" y there is a positive "delta" z such that a distance less than delta in C maps to a distance less than epsilon in D . (Contributed by NM, 15-May-2007) (Revised by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metcn.2 | |- J = ( MetOpen ` C ) |
|
| metcn.4 | |- K = ( MetOpen ` D ) |
||
| Assertion | metcn | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` Y ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. x e. X A. y e. RR+ E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( F ` x ) D ( F ` w ) ) < y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcn.2 | |- J = ( MetOpen ` C ) |
|
| 2 | metcn.4 | |- K = ( MetOpen ` D ) |
|
| 3 | 1 | mopntopon | |- ( C e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 4 | 2 | mopntopon | |- ( D e. ( *Met ` Y ) -> K e. ( TopOn ` Y ) ) |
| 5 | cncnp | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. x e. X F e. ( ( J CnP K ) ` x ) ) ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` Y ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. x e. X F e. ( ( J CnP K ) ` x ) ) ) ) |
| 7 | simplr | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` Y ) ) /\ F : X --> Y ) /\ x e. X ) -> F : X --> Y ) |
|
| 8 | 1 2 | metcnp | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` Y ) /\ x e. X ) -> ( F e. ( ( J CnP K ) ` x ) <-> ( F : X --> Y /\ A. y e. RR+ E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( F ` x ) D ( F ` w ) ) < y ) ) ) ) |
| 9 | 8 | ad4ant124 | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` Y ) ) /\ F : X --> Y ) /\ x e. X ) -> ( F e. ( ( J CnP K ) ` x ) <-> ( F : X --> Y /\ A. y e. RR+ E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( F ` x ) D ( F ` w ) ) < y ) ) ) ) |
| 10 | 7 9 | mpbirand | |- ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` Y ) ) /\ F : X --> Y ) /\ x e. X ) -> ( F e. ( ( J CnP K ) ` x ) <-> A. y e. RR+ E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( F ` x ) D ( F ` w ) ) < y ) ) ) |
| 11 | 10 | ralbidva | |- ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` Y ) ) /\ F : X --> Y ) -> ( A. x e. X F e. ( ( J CnP K ) ` x ) <-> A. x e. X A. y e. RR+ E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( F ` x ) D ( F ` w ) ) < y ) ) ) |
| 12 | 11 | pm5.32da | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` Y ) ) -> ( ( F : X --> Y /\ A. x e. X F e. ( ( J CnP K ) ` x ) ) <-> ( F : X --> Y /\ A. x e. X A. y e. RR+ E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( F ` x ) D ( F ` w ) ) < y ) ) ) ) |
| 13 | 6 12 | bitrd | |- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` Y ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. x e. X A. y e. RR+ E. z e. RR+ A. w e. X ( ( x C w ) < z -> ( ( F ` x ) D ( F ` w ) ) < y ) ) ) ) |