This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010) (Proof shortened by Mario Carneiro, 29-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimax2g | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A -. x R y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sopo | |- ( R Or A -> R Po A ) |
|
| 2 | cnvpo | |- ( R Po A <-> `' R Po A ) |
|
| 3 | 1 2 | sylib | |- ( R Or A -> `' R Po A ) |
| 4 | frfi | |- ( ( `' R Po A /\ A e. Fin ) -> `' R Fr A ) |
|
| 5 | 3 4 | sylan | |- ( ( R Or A /\ A e. Fin ) -> `' R Fr A ) |
| 6 | 5 | 3adant3 | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> `' R Fr A ) |
| 7 | ssid | |- A C_ A |
|
| 8 | fri | |- ( ( ( A e. Fin /\ `' R Fr A ) /\ ( A C_ A /\ A =/= (/) ) ) -> E. x e. A A. y e. A -. y `' R x ) |
|
| 9 | 7 8 | mpanr1 | |- ( ( ( A e. Fin /\ `' R Fr A ) /\ A =/= (/) ) -> E. x e. A A. y e. A -. y `' R x ) |
| 10 | 9 | an32s | |- ( ( ( A e. Fin /\ A =/= (/) ) /\ `' R Fr A ) -> E. x e. A A. y e. A -. y `' R x ) |
| 11 | vex | |- y e. _V |
|
| 12 | vex | |- x e. _V |
|
| 13 | 11 12 | brcnv | |- ( y `' R x <-> x R y ) |
| 14 | 13 | notbii | |- ( -. y `' R x <-> -. x R y ) |
| 15 | 14 | ralbii | |- ( A. y e. A -. y `' R x <-> A. y e. A -. x R y ) |
| 16 | 15 | rexbii | |- ( E. x e. A A. y e. A -. y `' R x <-> E. x e. A A. y e. A -. x R y ) |
| 17 | 10 16 | sylib | |- ( ( ( A e. Fin /\ A =/= (/) ) /\ `' R Fr A ) -> E. x e. A A. y e. A -. x R y ) |
| 18 | 17 | ex | |- ( ( A e. Fin /\ A =/= (/) ) -> ( `' R Fr A -> E. x e. A A. y e. A -. x R y ) ) |
| 19 | 18 | 3adant1 | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> ( `' R Fr A -> E. x e. A A. y e. A -. x R y ) ) |
| 20 | 6 19 | mpd | |- ( ( R Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A -. x R y ) |