This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013) (Revised by Mario Carneiro, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fineqv | |- ( -. _om e. _V <-> Fin = _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv | |- Fin C_ _V |
|
| 2 | 1 | a1i | |- ( -. _om e. _V -> Fin C_ _V ) |
| 3 | vex | |- a e. _V |
|
| 4 | fineqvlem | |- ( ( a e. _V /\ -. a e. Fin ) -> _om ~<_ ~P ~P a ) |
|
| 5 | 3 4 | mpan | |- ( -. a e. Fin -> _om ~<_ ~P ~P a ) |
| 6 | reldom | |- Rel ~<_ |
|
| 7 | 6 | brrelex1i | |- ( _om ~<_ ~P ~P a -> _om e. _V ) |
| 8 | 5 7 | syl | |- ( -. a e. Fin -> _om e. _V ) |
| 9 | 8 | con1i | |- ( -. _om e. _V -> a e. Fin ) |
| 10 | 9 | a1d | |- ( -. _om e. _V -> ( a e. _V -> a e. Fin ) ) |
| 11 | 10 | ssrdv | |- ( -. _om e. _V -> _V C_ Fin ) |
| 12 | 2 11 | eqssd | |- ( -. _om e. _V -> Fin = _V ) |
| 13 | ominf | |- -. _om e. Fin |
|
| 14 | eleq2 | |- ( Fin = _V -> ( _om e. Fin <-> _om e. _V ) ) |
|
| 15 | 13 14 | mtbii | |- ( Fin = _V -> -. _om e. _V ) |
| 16 | 12 15 | impbii | |- ( -. _om e. _V <-> Fin = _V ) |