This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 2-Aug-1999) (Revised by Mario Carneiro, 4-Jun-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | |- S e. CC |
|
| normlem1.2 | |- F e. ~H |
||
| normlem1.3 | |- G e. ~H |
||
| normlem2.4 | |- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
||
| normlem3.5 | |- A = ( G .ih G ) |
||
| normlem3.6 | |- C = ( F .ih F ) |
||
| normlem6.7 | |- ( abs ` S ) = 1 |
||
| Assertion | normlem6 | |- ( abs ` B ) <_ ( 2 x. ( ( sqrt ` A ) x. ( sqrt ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | |- S e. CC |
|
| 2 | normlem1.2 | |- F e. ~H |
|
| 3 | normlem1.3 | |- G e. ~H |
|
| 4 | normlem2.4 | |- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
|
| 5 | normlem3.5 | |- A = ( G .ih G ) |
|
| 6 | normlem3.6 | |- C = ( F .ih F ) |
|
| 7 | normlem6.7 | |- ( abs ` S ) = 1 |
|
| 8 | hiidrcl | |- ( G e. ~H -> ( G .ih G ) e. RR ) |
|
| 9 | 3 8 | ax-mp | |- ( G .ih G ) e. RR |
| 10 | 5 9 | eqeltri | |- A e. RR |
| 11 | 10 | a1i | |- ( T. -> A e. RR ) |
| 12 | 1 2 3 4 | normlem2 | |- B e. RR |
| 13 | 12 | a1i | |- ( T. -> B e. RR ) |
| 14 | hiidrcl | |- ( F e. ~H -> ( F .ih F ) e. RR ) |
|
| 15 | 2 14 | ax-mp | |- ( F .ih F ) e. RR |
| 16 | 6 15 | eqeltri | |- C e. RR |
| 17 | 16 | a1i | |- ( T. -> C e. RR ) |
| 18 | oveq1 | |- ( x = if ( x e. RR , x , 0 ) -> ( x ^ 2 ) = ( if ( x e. RR , x , 0 ) ^ 2 ) ) |
|
| 19 | 18 | oveq2d | |- ( x = if ( x e. RR , x , 0 ) -> ( A x. ( x ^ 2 ) ) = ( A x. ( if ( x e. RR , x , 0 ) ^ 2 ) ) ) |
| 20 | oveq2 | |- ( x = if ( x e. RR , x , 0 ) -> ( B x. x ) = ( B x. if ( x e. RR , x , 0 ) ) ) |
|
| 21 | 19 20 | oveq12d | |- ( x = if ( x e. RR , x , 0 ) -> ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) = ( ( A x. ( if ( x e. RR , x , 0 ) ^ 2 ) ) + ( B x. if ( x e. RR , x , 0 ) ) ) ) |
| 22 | 21 | oveq1d | |- ( x = if ( x e. RR , x , 0 ) -> ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) = ( ( ( A x. ( if ( x e. RR , x , 0 ) ^ 2 ) ) + ( B x. if ( x e. RR , x , 0 ) ) ) + C ) ) |
| 23 | 22 | breq2d | |- ( x = if ( x e. RR , x , 0 ) -> ( 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) <-> 0 <_ ( ( ( A x. ( if ( x e. RR , x , 0 ) ^ 2 ) ) + ( B x. if ( x e. RR , x , 0 ) ) ) + C ) ) ) |
| 24 | 0re | |- 0 e. RR |
|
| 25 | 24 | elimel | |- if ( x e. RR , x , 0 ) e. RR |
| 26 | 1 2 3 4 5 6 25 7 | normlem5 | |- 0 <_ ( ( ( A x. ( if ( x e. RR , x , 0 ) ^ 2 ) ) + ( B x. if ( x e. RR , x , 0 ) ) ) + C ) |
| 27 | 23 26 | dedth | |- ( x e. RR -> 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
| 28 | 27 | adantl | |- ( ( T. /\ x e. RR ) -> 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) |
| 29 | 11 13 17 28 | discr | |- ( T. -> ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 ) |
| 30 | 29 | mptru | |- ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 |
| 31 | 12 | resqcli | |- ( B ^ 2 ) e. RR |
| 32 | 4re | |- 4 e. RR |
|
| 33 | 10 16 | remulcli | |- ( A x. C ) e. RR |
| 34 | 32 33 | remulcli | |- ( 4 x. ( A x. C ) ) e. RR |
| 35 | 31 34 24 | lesubadd2i | |- ( ( ( B ^ 2 ) - ( 4 x. ( A x. C ) ) ) <_ 0 <-> ( B ^ 2 ) <_ ( ( 4 x. ( A x. C ) ) + 0 ) ) |
| 36 | 30 35 | mpbi | |- ( B ^ 2 ) <_ ( ( 4 x. ( A x. C ) ) + 0 ) |
| 37 | 34 | recni | |- ( 4 x. ( A x. C ) ) e. CC |
| 38 | 37 | addridi | |- ( ( 4 x. ( A x. C ) ) + 0 ) = ( 4 x. ( A x. C ) ) |
| 39 | 36 38 | breqtri | |- ( B ^ 2 ) <_ ( 4 x. ( A x. C ) ) |
| 40 | 12 | sqge0i | |- 0 <_ ( B ^ 2 ) |
| 41 | 4pos | |- 0 < 4 |
|
| 42 | 24 32 41 | ltleii | |- 0 <_ 4 |
| 43 | hiidge0 | |- ( G e. ~H -> 0 <_ ( G .ih G ) ) |
|
| 44 | 3 43 | ax-mp | |- 0 <_ ( G .ih G ) |
| 45 | 44 5 | breqtrri | |- 0 <_ A |
| 46 | hiidge0 | |- ( F e. ~H -> 0 <_ ( F .ih F ) ) |
|
| 47 | 2 46 | ax-mp | |- 0 <_ ( F .ih F ) |
| 48 | 47 6 | breqtrri | |- 0 <_ C |
| 49 | 10 16 | mulge0i | |- ( ( 0 <_ A /\ 0 <_ C ) -> 0 <_ ( A x. C ) ) |
| 50 | 45 48 49 | mp2an | |- 0 <_ ( A x. C ) |
| 51 | 32 33 | mulge0i | |- ( ( 0 <_ 4 /\ 0 <_ ( A x. C ) ) -> 0 <_ ( 4 x. ( A x. C ) ) ) |
| 52 | 42 50 51 | mp2an | |- 0 <_ ( 4 x. ( A x. C ) ) |
| 53 | 31 34 | sqrtlei | |- ( ( 0 <_ ( B ^ 2 ) /\ 0 <_ ( 4 x. ( A x. C ) ) ) -> ( ( B ^ 2 ) <_ ( 4 x. ( A x. C ) ) <-> ( sqrt ` ( B ^ 2 ) ) <_ ( sqrt ` ( 4 x. ( A x. C ) ) ) ) ) |
| 54 | 40 52 53 | mp2an | |- ( ( B ^ 2 ) <_ ( 4 x. ( A x. C ) ) <-> ( sqrt ` ( B ^ 2 ) ) <_ ( sqrt ` ( 4 x. ( A x. C ) ) ) ) |
| 55 | 39 54 | mpbi | |- ( sqrt ` ( B ^ 2 ) ) <_ ( sqrt ` ( 4 x. ( A x. C ) ) ) |
| 56 | 12 | absrei | |- ( abs ` B ) = ( sqrt ` ( B ^ 2 ) ) |
| 57 | 32 33 42 50 | sqrtmulii | |- ( sqrt ` ( 4 x. ( A x. C ) ) ) = ( ( sqrt ` 4 ) x. ( sqrt ` ( A x. C ) ) ) |
| 58 | sqrt4 | |- ( sqrt ` 4 ) = 2 |
|
| 59 | 10 16 45 48 | sqrtmulii | |- ( sqrt ` ( A x. C ) ) = ( ( sqrt ` A ) x. ( sqrt ` C ) ) |
| 60 | 58 59 | oveq12i | |- ( ( sqrt ` 4 ) x. ( sqrt ` ( A x. C ) ) ) = ( 2 x. ( ( sqrt ` A ) x. ( sqrt ` C ) ) ) |
| 61 | 57 60 | eqtr2i | |- ( 2 x. ( ( sqrt ` A ) x. ( sqrt ` C ) ) ) = ( sqrt ` ( 4 x. ( A x. C ) ) ) |
| 62 | 55 56 61 | 3brtr4i | |- ( abs ` B ) <_ ( 2 x. ( ( sqrt ` A ) x. ( sqrt ` C ) ) ) |