This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 11-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | |- S e. CC |
|
| normlem1.2 | |- F e. ~H |
||
| normlem1.3 | |- G e. ~H |
||
| normlem7.4 | |- ( abs ` S ) = 1 |
||
| Assertion | normlem7 | |- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) <_ ( 2 x. ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | |- S e. CC |
|
| 2 | normlem1.2 | |- F e. ~H |
|
| 3 | normlem1.3 | |- G e. ~H |
|
| 4 | normlem7.4 | |- ( abs ` S ) = 1 |
|
| 5 | eqid | |- -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
|
| 6 | 1 2 3 5 | normlem2 | |- -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR |
| 7 | 1 | cjcli | |- ( * ` S ) e. CC |
| 8 | 2 3 | hicli | |- ( F .ih G ) e. CC |
| 9 | 7 8 | mulcli | |- ( ( * ` S ) x. ( F .ih G ) ) e. CC |
| 10 | 3 2 | hicli | |- ( G .ih F ) e. CC |
| 11 | 1 10 | mulcli | |- ( S x. ( G .ih F ) ) e. CC |
| 12 | 9 11 | addcli | |- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. CC |
| 13 | 12 | negrebi | |- ( -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR <-> ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR ) |
| 14 | 6 13 | mpbi | |- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR |
| 15 | 14 | leabsi | |- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) <_ ( abs ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) |
| 16 | 12 | absnegi | |- ( abs ` -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( abs ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) |
| 17 | 15 16 | breqtrri | |- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) <_ ( abs ` -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) |
| 18 | eqid | |- ( G .ih G ) = ( G .ih G ) |
|
| 19 | eqid | |- ( F .ih F ) = ( F .ih F ) |
|
| 20 | 1 2 3 5 18 19 4 | normlem6 | |- ( abs ` -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) <_ ( 2 x. ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) ) |
| 21 | 12 | negcli | |- -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. CC |
| 22 | 21 | abscli | |- ( abs ` -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) e. RR |
| 23 | 2re | |- 2 e. RR |
|
| 24 | hiidge0 | |- ( G e. ~H -> 0 <_ ( G .ih G ) ) |
|
| 25 | hiidrcl | |- ( G e. ~H -> ( G .ih G ) e. RR ) |
|
| 26 | 3 25 | ax-mp | |- ( G .ih G ) e. RR |
| 27 | 26 | sqrtcli | |- ( 0 <_ ( G .ih G ) -> ( sqrt ` ( G .ih G ) ) e. RR ) |
| 28 | 3 24 27 | mp2b | |- ( sqrt ` ( G .ih G ) ) e. RR |
| 29 | hiidge0 | |- ( F e. ~H -> 0 <_ ( F .ih F ) ) |
|
| 30 | hiidrcl | |- ( F e. ~H -> ( F .ih F ) e. RR ) |
|
| 31 | 2 30 | ax-mp | |- ( F .ih F ) e. RR |
| 32 | 31 | sqrtcli | |- ( 0 <_ ( F .ih F ) -> ( sqrt ` ( F .ih F ) ) e. RR ) |
| 33 | 2 29 32 | mp2b | |- ( sqrt ` ( F .ih F ) ) e. RR |
| 34 | 28 33 | remulcli | |- ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) e. RR |
| 35 | 23 34 | remulcli | |- ( 2 x. ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) ) e. RR |
| 36 | 14 22 35 | letri | |- ( ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) <_ ( abs ` -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) /\ ( abs ` -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) <_ ( 2 x. ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) ) ) -> ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) <_ ( 2 x. ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) ) ) |
| 37 | 17 20 36 | mp2an | |- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) <_ ( 2 x. ( ( sqrt ` ( G .ih G ) ) x. ( sqrt ` ( F .ih F ) ) ) ) |