This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 10-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | |- S e. CC |
|
| normlem1.2 | |- F e. ~H |
||
| normlem1.3 | |- G e. ~H |
||
| normlem2.4 | |- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
||
| normlem3.5 | |- A = ( G .ih G ) |
||
| normlem3.6 | |- C = ( F .ih F ) |
||
| normlem4.7 | |- R e. RR |
||
| normlem4.8 | |- ( abs ` S ) = 1 |
||
| Assertion | normlem5 | |- 0 <_ ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | |- S e. CC |
|
| 2 | normlem1.2 | |- F e. ~H |
|
| 3 | normlem1.3 | |- G e. ~H |
|
| 4 | normlem2.4 | |- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
|
| 5 | normlem3.5 | |- A = ( G .ih G ) |
|
| 6 | normlem3.6 | |- C = ( F .ih F ) |
|
| 7 | normlem4.7 | |- R e. RR |
|
| 8 | normlem4.8 | |- ( abs ` S ) = 1 |
|
| 9 | 7 | recni | |- R e. CC |
| 10 | 1 9 | mulcli | |- ( S x. R ) e. CC |
| 11 | 10 3 | hvmulcli | |- ( ( S x. R ) .h G ) e. ~H |
| 12 | 2 11 | hvsubcli | |- ( F -h ( ( S x. R ) .h G ) ) e. ~H |
| 13 | hiidge0 | |- ( ( F -h ( ( S x. R ) .h G ) ) e. ~H -> 0 <_ ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) ) |
|
| 14 | 12 13 | ax-mp | |- 0 <_ ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) |
| 15 | 1 2 3 4 5 6 7 8 | normlem4 | |- ( ( F -h ( ( S x. R ) .h G ) ) .ih ( F -h ( ( S x. R ) .h G ) ) ) = ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) |
| 16 | 14 15 | breqtri | |- 0 <_ ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) |