This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 2-Aug-1999) (Revised by Mario Carneiro, 4-Jun-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ | ||
| normlem1.3 | ⊢ 𝐺 ∈ ℋ | ||
| normlem2.4 | ⊢ 𝐵 = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) | ||
| normlem3.5 | ⊢ 𝐴 = ( 𝐺 ·ih 𝐺 ) | ||
| normlem3.6 | ⊢ 𝐶 = ( 𝐹 ·ih 𝐹 ) | ||
| normlem6.7 | ⊢ ( abs ‘ 𝑆 ) = 1 | ||
| Assertion | normlem6 | ⊢ ( abs ‘ 𝐵 ) ≤ ( 2 · ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| 2 | normlem1.2 | ⊢ 𝐹 ∈ ℋ | |
| 3 | normlem1.3 | ⊢ 𝐺 ∈ ℋ | |
| 4 | normlem2.4 | ⊢ 𝐵 = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) | |
| 5 | normlem3.5 | ⊢ 𝐴 = ( 𝐺 ·ih 𝐺 ) | |
| 6 | normlem3.6 | ⊢ 𝐶 = ( 𝐹 ·ih 𝐹 ) | |
| 7 | normlem6.7 | ⊢ ( abs ‘ 𝑆 ) = 1 | |
| 8 | hiidrcl | ⊢ ( 𝐺 ∈ ℋ → ( 𝐺 ·ih 𝐺 ) ∈ ℝ ) | |
| 9 | 3 8 | ax-mp | ⊢ ( 𝐺 ·ih 𝐺 ) ∈ ℝ |
| 10 | 5 9 | eqeltri | ⊢ 𝐴 ∈ ℝ |
| 11 | 10 | a1i | ⊢ ( ⊤ → 𝐴 ∈ ℝ ) |
| 12 | 1 2 3 4 | normlem2 | ⊢ 𝐵 ∈ ℝ |
| 13 | 12 | a1i | ⊢ ( ⊤ → 𝐵 ∈ ℝ ) |
| 14 | hiidrcl | ⊢ ( 𝐹 ∈ ℋ → ( 𝐹 ·ih 𝐹 ) ∈ ℝ ) | |
| 15 | 2 14 | ax-mp | ⊢ ( 𝐹 ·ih 𝐹 ) ∈ ℝ |
| 16 | 6 15 | eqeltri | ⊢ 𝐶 ∈ ℝ |
| 17 | 16 | a1i | ⊢ ( ⊤ → 𝐶 ∈ ℝ ) |
| 18 | oveq1 | ⊢ ( 𝑥 = if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) → ( 𝑥 ↑ 2 ) = ( if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) ↑ 2 ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑥 = if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) → ( 𝐴 · ( 𝑥 ↑ 2 ) ) = ( 𝐴 · ( if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) ↑ 2 ) ) ) |
| 20 | oveq2 | ⊢ ( 𝑥 = if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) ) ) | |
| 21 | 19 20 | oveq12d | ⊢ ( 𝑥 = if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) → ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) = ( ( 𝐴 · ( if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) ↑ 2 ) ) + ( 𝐵 · if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) ) ) ) |
| 22 | 21 | oveq1d | ⊢ ( 𝑥 = if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) → ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) = ( ( ( 𝐴 · ( if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) ↑ 2 ) ) + ( 𝐵 · if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) ) ) + 𝐶 ) ) |
| 23 | 22 | breq2d | ⊢ ( 𝑥 = if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) → ( 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ↔ 0 ≤ ( ( ( 𝐴 · ( if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) ↑ 2 ) ) + ( 𝐵 · if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) ) ) + 𝐶 ) ) ) |
| 24 | 0re | ⊢ 0 ∈ ℝ | |
| 25 | 24 | elimel | ⊢ if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) ∈ ℝ |
| 26 | 1 2 3 4 5 6 25 7 | normlem5 | ⊢ 0 ≤ ( ( ( 𝐴 · ( if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) ↑ 2 ) ) + ( 𝐵 · if ( 𝑥 ∈ ℝ , 𝑥 , 0 ) ) ) + 𝐶 ) |
| 27 | 23 26 | dedth | ⊢ ( 𝑥 ∈ ℝ → 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) |
| 28 | 27 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( ( 𝐴 · ( 𝑥 ↑ 2 ) ) + ( 𝐵 · 𝑥 ) ) + 𝐶 ) ) |
| 29 | 11 13 17 28 | discr | ⊢ ( ⊤ → ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ≤ 0 ) |
| 30 | 29 | mptru | ⊢ ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ≤ 0 |
| 31 | 12 | resqcli | ⊢ ( 𝐵 ↑ 2 ) ∈ ℝ |
| 32 | 4re | ⊢ 4 ∈ ℝ | |
| 33 | 10 16 | remulcli | ⊢ ( 𝐴 · 𝐶 ) ∈ ℝ |
| 34 | 32 33 | remulcli | ⊢ ( 4 · ( 𝐴 · 𝐶 ) ) ∈ ℝ |
| 35 | 31 34 24 | lesubadd2i | ⊢ ( ( ( 𝐵 ↑ 2 ) − ( 4 · ( 𝐴 · 𝐶 ) ) ) ≤ 0 ↔ ( 𝐵 ↑ 2 ) ≤ ( ( 4 · ( 𝐴 · 𝐶 ) ) + 0 ) ) |
| 36 | 30 35 | mpbi | ⊢ ( 𝐵 ↑ 2 ) ≤ ( ( 4 · ( 𝐴 · 𝐶 ) ) + 0 ) |
| 37 | 34 | recni | ⊢ ( 4 · ( 𝐴 · 𝐶 ) ) ∈ ℂ |
| 38 | 37 | addridi | ⊢ ( ( 4 · ( 𝐴 · 𝐶 ) ) + 0 ) = ( 4 · ( 𝐴 · 𝐶 ) ) |
| 39 | 36 38 | breqtri | ⊢ ( 𝐵 ↑ 2 ) ≤ ( 4 · ( 𝐴 · 𝐶 ) ) |
| 40 | 12 | sqge0i | ⊢ 0 ≤ ( 𝐵 ↑ 2 ) |
| 41 | 4pos | ⊢ 0 < 4 | |
| 42 | 24 32 41 | ltleii | ⊢ 0 ≤ 4 |
| 43 | hiidge0 | ⊢ ( 𝐺 ∈ ℋ → 0 ≤ ( 𝐺 ·ih 𝐺 ) ) | |
| 44 | 3 43 | ax-mp | ⊢ 0 ≤ ( 𝐺 ·ih 𝐺 ) |
| 45 | 44 5 | breqtrri | ⊢ 0 ≤ 𝐴 |
| 46 | hiidge0 | ⊢ ( 𝐹 ∈ ℋ → 0 ≤ ( 𝐹 ·ih 𝐹 ) ) | |
| 47 | 2 46 | ax-mp | ⊢ 0 ≤ ( 𝐹 ·ih 𝐹 ) |
| 48 | 47 6 | breqtrri | ⊢ 0 ≤ 𝐶 |
| 49 | 10 16 | mulge0i | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ) → 0 ≤ ( 𝐴 · 𝐶 ) ) |
| 50 | 45 48 49 | mp2an | ⊢ 0 ≤ ( 𝐴 · 𝐶 ) |
| 51 | 32 33 | mulge0i | ⊢ ( ( 0 ≤ 4 ∧ 0 ≤ ( 𝐴 · 𝐶 ) ) → 0 ≤ ( 4 · ( 𝐴 · 𝐶 ) ) ) |
| 52 | 42 50 51 | mp2an | ⊢ 0 ≤ ( 4 · ( 𝐴 · 𝐶 ) ) |
| 53 | 31 34 | sqrtlei | ⊢ ( ( 0 ≤ ( 𝐵 ↑ 2 ) ∧ 0 ≤ ( 4 · ( 𝐴 · 𝐶 ) ) ) → ( ( 𝐵 ↑ 2 ) ≤ ( 4 · ( 𝐴 · 𝐶 ) ) ↔ ( √ ‘ ( 𝐵 ↑ 2 ) ) ≤ ( √ ‘ ( 4 · ( 𝐴 · 𝐶 ) ) ) ) ) |
| 54 | 40 52 53 | mp2an | ⊢ ( ( 𝐵 ↑ 2 ) ≤ ( 4 · ( 𝐴 · 𝐶 ) ) ↔ ( √ ‘ ( 𝐵 ↑ 2 ) ) ≤ ( √ ‘ ( 4 · ( 𝐴 · 𝐶 ) ) ) ) |
| 55 | 39 54 | mpbi | ⊢ ( √ ‘ ( 𝐵 ↑ 2 ) ) ≤ ( √ ‘ ( 4 · ( 𝐴 · 𝐶 ) ) ) |
| 56 | 12 | absrei | ⊢ ( abs ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ↑ 2 ) ) |
| 57 | 32 33 42 50 | sqrtmulii | ⊢ ( √ ‘ ( 4 · ( 𝐴 · 𝐶 ) ) ) = ( ( √ ‘ 4 ) · ( √ ‘ ( 𝐴 · 𝐶 ) ) ) |
| 58 | sqrt4 | ⊢ ( √ ‘ 4 ) = 2 | |
| 59 | 10 16 45 48 | sqrtmulii | ⊢ ( √ ‘ ( 𝐴 · 𝐶 ) ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐶 ) ) |
| 60 | 58 59 | oveq12i | ⊢ ( ( √ ‘ 4 ) · ( √ ‘ ( 𝐴 · 𝐶 ) ) ) = ( 2 · ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐶 ) ) ) |
| 61 | 57 60 | eqtr2i | ⊢ ( 2 · ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐶 ) ) ) = ( √ ‘ ( 4 · ( 𝐴 · 𝐶 ) ) ) |
| 62 | 55 56 61 | 3brtr4i | ⊢ ( abs ‘ 𝐵 ) ≤ ( 2 · ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐶 ) ) ) |