This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 27-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | |- S e. CC |
|
| normlem1.2 | |- F e. ~H |
||
| normlem1.3 | |- G e. ~H |
||
| normlem2.4 | |- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
||
| Assertion | normlem2 | |- B e. RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | |- S e. CC |
|
| 2 | normlem1.2 | |- F e. ~H |
|
| 3 | normlem1.3 | |- G e. ~H |
|
| 4 | normlem2.4 | |- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
|
| 5 | 1 | cjcli | |- ( * ` S ) e. CC |
| 6 | 2 3 | hicli | |- ( F .ih G ) e. CC |
| 7 | 5 6 | mulcli | |- ( ( * ` S ) x. ( F .ih G ) ) e. CC |
| 8 | 3 2 | hicli | |- ( G .ih F ) e. CC |
| 9 | 1 8 | mulcli | |- ( S x. ( G .ih F ) ) e. CC |
| 10 | 7 9 | cjaddi | |- ( * ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( ( * ` ( ( * ` S ) x. ( F .ih G ) ) ) + ( * ` ( S x. ( G .ih F ) ) ) ) |
| 11 | 1 | cjcji | |- ( * ` ( * ` S ) ) = S |
| 12 | 11 | eqcomi | |- S = ( * ` ( * ` S ) ) |
| 13 | 3 2 | his1i | |- ( G .ih F ) = ( * ` ( F .ih G ) ) |
| 14 | 12 13 | oveq12i | |- ( S x. ( G .ih F ) ) = ( ( * ` ( * ` S ) ) x. ( * ` ( F .ih G ) ) ) |
| 15 | 5 6 | cjmuli | |- ( * ` ( ( * ` S ) x. ( F .ih G ) ) ) = ( ( * ` ( * ` S ) ) x. ( * ` ( F .ih G ) ) ) |
| 16 | 14 15 | eqtr4i | |- ( S x. ( G .ih F ) ) = ( * ` ( ( * ` S ) x. ( F .ih G ) ) ) |
| 17 | 2 3 | his1i | |- ( F .ih G ) = ( * ` ( G .ih F ) ) |
| 18 | 17 | oveq2i | |- ( ( * ` S ) x. ( F .ih G ) ) = ( ( * ` S ) x. ( * ` ( G .ih F ) ) ) |
| 19 | 1 8 | cjmuli | |- ( * ` ( S x. ( G .ih F ) ) ) = ( ( * ` S ) x. ( * ` ( G .ih F ) ) ) |
| 20 | 18 19 | eqtr4i | |- ( ( * ` S ) x. ( F .ih G ) ) = ( * ` ( S x. ( G .ih F ) ) ) |
| 21 | 16 20 | oveq12i | |- ( ( S x. ( G .ih F ) ) + ( ( * ` S ) x. ( F .ih G ) ) ) = ( ( * ` ( ( * ` S ) x. ( F .ih G ) ) ) + ( * ` ( S x. ( G .ih F ) ) ) ) |
| 22 | 10 21 | eqtr4i | |- ( * ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( ( S x. ( G .ih F ) ) + ( ( * ` S ) x. ( F .ih G ) ) ) |
| 23 | 7 9 | addcomi | |- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) = ( ( S x. ( G .ih F ) ) + ( ( * ` S ) x. ( F .ih G ) ) ) |
| 24 | 22 23 | eqtr4i | |- ( * ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
| 25 | 7 9 | addcli | |- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. CC |
| 26 | 25 | cjrebi | |- ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR <-> ( * ` ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) = ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) ) |
| 27 | 24 26 | mpbir | |- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR |
| 28 | 27 | renegcli | |- -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. RR |
| 29 | 4 28 | eqeltri | |- B e. RR |