This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm is a bound on the growth of a vector under the action of the operator. (Contributed by Mario Carneiro, 19-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| nmoi.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
| nmoi.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
| nmoi.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
| nmoi2.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| Assertion | nmoi2 | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | nmoi.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 3 | nmoi.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
| 4 | nmoi.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
| 5 | nmoi2.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 6 | simpl2 | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → 𝑇 ∈ NrmGrp ) | |
| 7 | simpl3 | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 9 | 2 8 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 10 | 7 9 | syl | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 11 | simprl | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → 𝑋 ∈ 𝑉 ) | |
| 12 | 10 11 | ffvelcdmd | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) |
| 13 | 8 4 | nmcl | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 14 | 6 12 13 | syl2anc | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 15 | 14 | rexrd | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ* ) |
| 16 | 1 | nmocl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 18 | 2 3 5 | nmrpcl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ ) |
| 19 | 18 | 3expb | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ ) |
| 20 | 19 | 3ad2antl1 | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ ) |
| 21 | 20 | rpxrd | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ* ) |
| 22 | 17 21 | xmulcld | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ* ) |
| 23 | 20 | rpreccld | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 1 / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ+ ) |
| 24 | 23 | rpxrd | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 1 / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ* ) |
| 25 | 23 | rpge0d | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → 0 ≤ ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) |
| 26 | 24 25 | jca | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 1 / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ* ∧ 0 ≤ ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ) |
| 27 | 1 2 3 4 | nmoix | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ) |
| 28 | 27 | adantrr | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ) |
| 29 | xlemul1a | ⊢ ( ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ* ∧ ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ* ∧ ( ( 1 / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ* ∧ 0 ≤ ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ) ∧ ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ≤ ( ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ) | |
| 30 | 15 22 26 28 29 | syl31anc | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ≤ ( ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ) |
| 31 | 23 | rpred | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 1 / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ ) |
| 32 | rexmul | ⊢ ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ∧ ( 1 / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) = ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) · ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ) | |
| 33 | 14 31 32 | syl2anc | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) = ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) · ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ) |
| 34 | 14 | recnd | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℂ ) |
| 35 | 20 | rpcnd | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℂ ) |
| 36 | 20 | rpne0d | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 𝐿 ‘ 𝑋 ) ≠ 0 ) |
| 37 | 34 35 36 | divrecd | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) = ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) · ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ) |
| 38 | 33 37 | eqtr4d | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) = ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ) |
| 39 | xmulass | ⊢ ( ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ ( 𝐿 ‘ 𝑋 ) ∈ ℝ* ∧ ( 1 / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ* ) → ( ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) = ( ( 𝑁 ‘ 𝐹 ) ·e ( ( 𝐿 ‘ 𝑋 ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ) ) | |
| 40 | 17 21 24 39 | syl3anc | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) = ( ( 𝑁 ‘ 𝐹 ) ·e ( ( 𝐿 ‘ 𝑋 ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ) ) |
| 41 | 20 | rpred | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ ) |
| 42 | rexmul | ⊢ ( ( ( 𝐿 ‘ 𝑋 ) ∈ ℝ ∧ ( 1 / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ ) → ( ( 𝐿 ‘ 𝑋 ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) = ( ( 𝐿 ‘ 𝑋 ) · ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ) | |
| 43 | 41 31 42 | syl2anc | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝐿 ‘ 𝑋 ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) = ( ( 𝐿 ‘ 𝑋 ) · ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ) |
| 44 | 35 36 | recidd | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝐿 ‘ 𝑋 ) · ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) = 1 ) |
| 45 | 43 44 | eqtrd | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝐿 ‘ 𝑋 ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) = 1 ) |
| 46 | 45 | oveq2d | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝑁 ‘ 𝐹 ) ·e ( ( 𝐿 ‘ 𝑋 ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) ) = ( ( 𝑁 ‘ 𝐹 ) ·e 1 ) ) |
| 47 | xmulrid | ⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* → ( ( 𝑁 ‘ 𝐹 ) ·e 1 ) = ( 𝑁 ‘ 𝐹 ) ) | |
| 48 | 17 47 | syl | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝑁 ‘ 𝐹 ) ·e 1 ) = ( 𝑁 ‘ 𝐹 ) ) |
| 49 | 40 46 48 | 3eqtrd | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ·e ( 1 / ( 𝐿 ‘ 𝑋 ) ) ) = ( 𝑁 ‘ 𝐹 ) ) |
| 50 | 30 38 49 | 3brtr3d | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ 𝐹 ) ) |