This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007) (Revised by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlmmul0or.v | |- V = ( Base ` W ) |
|
| nlmmul0or.s | |- .x. = ( .s ` W ) |
||
| nlmmul0or.z | |- .0. = ( 0g ` W ) |
||
| nlmmul0or.f | |- F = ( Scalar ` W ) |
||
| nlmmul0or.k | |- K = ( Base ` F ) |
||
| nlmmul0or.o | |- O = ( 0g ` F ) |
||
| Assertion | nlmmul0or | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( A .x. B ) = .0. <-> ( A = O \/ B = .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmmul0or.v | |- V = ( Base ` W ) |
|
| 2 | nlmmul0or.s | |- .x. = ( .s ` W ) |
|
| 3 | nlmmul0or.z | |- .0. = ( 0g ` W ) |
|
| 4 | nlmmul0or.f | |- F = ( Scalar ` W ) |
|
| 5 | nlmmul0or.k | |- K = ( Base ` F ) |
|
| 6 | nlmmul0or.o | |- O = ( 0g ` F ) |
|
| 7 | 4 | nlmngp2 | |- ( W e. NrmMod -> F e. NrmGrp ) |
| 8 | 7 | 3ad2ant1 | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> F e. NrmGrp ) |
| 9 | simp2 | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> A e. K ) |
|
| 10 | eqid | |- ( norm ` F ) = ( norm ` F ) |
|
| 11 | 5 10 | nmcl | |- ( ( F e. NrmGrp /\ A e. K ) -> ( ( norm ` F ) ` A ) e. RR ) |
| 12 | 8 9 11 | syl2anc | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( norm ` F ) ` A ) e. RR ) |
| 13 | 12 | recnd | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( norm ` F ) ` A ) e. CC ) |
| 14 | nlmngp | |- ( W e. NrmMod -> W e. NrmGrp ) |
|
| 15 | 14 | 3ad2ant1 | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> W e. NrmGrp ) |
| 16 | simp3 | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> B e. V ) |
|
| 17 | eqid | |- ( norm ` W ) = ( norm ` W ) |
|
| 18 | 1 17 | nmcl | |- ( ( W e. NrmGrp /\ B e. V ) -> ( ( norm ` W ) ` B ) e. RR ) |
| 19 | 15 16 18 | syl2anc | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( norm ` W ) ` B ) e. RR ) |
| 20 | 19 | recnd | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( norm ` W ) ` B ) e. CC ) |
| 21 | 13 20 | mul0ord | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( ( ( norm ` F ) ` A ) x. ( ( norm ` W ) ` B ) ) = 0 <-> ( ( ( norm ` F ) ` A ) = 0 \/ ( ( norm ` W ) ` B ) = 0 ) ) ) |
| 22 | 1 17 2 4 5 10 | nmvs | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( norm ` W ) ` ( A .x. B ) ) = ( ( ( norm ` F ) ` A ) x. ( ( norm ` W ) ` B ) ) ) |
| 23 | 22 | eqeq1d | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( ( norm ` W ) ` ( A .x. B ) ) = 0 <-> ( ( ( norm ` F ) ` A ) x. ( ( norm ` W ) ` B ) ) = 0 ) ) |
| 24 | nlmlmod | |- ( W e. NrmMod -> W e. LMod ) |
|
| 25 | 1 4 2 5 | lmodvscl | |- ( ( W e. LMod /\ A e. K /\ B e. V ) -> ( A .x. B ) e. V ) |
| 26 | 24 25 | syl3an1 | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( A .x. B ) e. V ) |
| 27 | 1 17 3 | nmeq0 | |- ( ( W e. NrmGrp /\ ( A .x. B ) e. V ) -> ( ( ( norm ` W ) ` ( A .x. B ) ) = 0 <-> ( A .x. B ) = .0. ) ) |
| 28 | 15 26 27 | syl2anc | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( ( norm ` W ) ` ( A .x. B ) ) = 0 <-> ( A .x. B ) = .0. ) ) |
| 29 | 23 28 | bitr3d | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( ( ( norm ` F ) ` A ) x. ( ( norm ` W ) ` B ) ) = 0 <-> ( A .x. B ) = .0. ) ) |
| 30 | 5 10 6 | nmeq0 | |- ( ( F e. NrmGrp /\ A e. K ) -> ( ( ( norm ` F ) ` A ) = 0 <-> A = O ) ) |
| 31 | 8 9 30 | syl2anc | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( ( norm ` F ) ` A ) = 0 <-> A = O ) ) |
| 32 | 1 17 3 | nmeq0 | |- ( ( W e. NrmGrp /\ B e. V ) -> ( ( ( norm ` W ) ` B ) = 0 <-> B = .0. ) ) |
| 33 | 15 16 32 | syl2anc | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( ( norm ` W ) ` B ) = 0 <-> B = .0. ) ) |
| 34 | 31 33 | orbi12d | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( ( ( norm ` F ) ` A ) = 0 \/ ( ( norm ` W ) ` B ) = 0 ) <-> ( A = O \/ B = .0. ) ) ) |
| 35 | 21 29 34 | 3bitr3d | |- ( ( W e. NrmMod /\ A e. K /\ B e. V ) -> ( ( A .x. B ) = .0. <-> ( A = O \/ B = .0. ) ) ) |