This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007) (Revised by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nlmmul0or.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| nlmmul0or.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| nlmmul0or.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| nlmmul0or.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| nlmmul0or.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| nlmmul0or.o | ⊢ 𝑂 = ( 0g ‘ 𝐹 ) | ||
| Assertion | nlmmul0or | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 𝑂 ∨ 𝐵 = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmmul0or.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | nlmmul0or.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | nlmmul0or.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | nlmmul0or.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | nlmmul0or.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | nlmmul0or.o | ⊢ 𝑂 = ( 0g ‘ 𝐹 ) | |
| 7 | 4 | nlmngp2 | ⊢ ( 𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → 𝐹 ∈ NrmGrp ) |
| 9 | simp2 | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝐾 ) | |
| 10 | eqid | ⊢ ( norm ‘ 𝐹 ) = ( norm ‘ 𝐹 ) | |
| 11 | 5 10 | nmcl | ⊢ ( ( 𝐹 ∈ NrmGrp ∧ 𝐴 ∈ 𝐾 ) → ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) ∈ ℝ ) |
| 12 | 8 9 11 | syl2anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) ∈ ℝ ) |
| 13 | 12 | recnd | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) ∈ ℂ ) |
| 14 | nlmngp | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) | |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ NrmGrp ) |
| 16 | simp3 | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) | |
| 17 | eqid | ⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) | |
| 18 | 1 17 | nmcl | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ 𝐵 ) ∈ ℝ ) |
| 19 | 15 16 18 | syl2anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ 𝐵 ) ∈ ℝ ) |
| 20 | 19 | recnd | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ 𝐵 ) ∈ ℂ ) |
| 21 | 13 20 | mul0ord | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) · ( ( norm ‘ 𝑊 ) ‘ 𝐵 ) ) = 0 ↔ ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) = 0 ∨ ( ( norm ‘ 𝑊 ) ‘ 𝐵 ) = 0 ) ) ) |
| 22 | 1 17 2 4 5 10 | nmvs | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) · ( ( norm ‘ 𝑊 ) ‘ 𝐵 ) ) ) |
| 23 | 22 | eqeq1d | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( norm ‘ 𝑊 ) ‘ ( 𝐴 · 𝐵 ) ) = 0 ↔ ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) · ( ( norm ‘ 𝑊 ) ‘ 𝐵 ) ) = 0 ) ) |
| 24 | nlmlmod | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) | |
| 25 | 1 4 2 5 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 · 𝐵 ) ∈ 𝑉 ) |
| 26 | 24 25 | syl3an1 | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 · 𝐵 ) ∈ 𝑉 ) |
| 27 | 1 17 3 | nmeq0 | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ ( 𝐴 · 𝐵 ) ∈ 𝑉 ) → ( ( ( norm ‘ 𝑊 ) ‘ ( 𝐴 · 𝐵 ) ) = 0 ↔ ( 𝐴 · 𝐵 ) = 0 ) ) |
| 28 | 15 26 27 | syl2anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( norm ‘ 𝑊 ) ‘ ( 𝐴 · 𝐵 ) ) = 0 ↔ ( 𝐴 · 𝐵 ) = 0 ) ) |
| 29 | 23 28 | bitr3d | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) · ( ( norm ‘ 𝑊 ) ‘ 𝐵 ) ) = 0 ↔ ( 𝐴 · 𝐵 ) = 0 ) ) |
| 30 | 5 10 6 | nmeq0 | ⊢ ( ( 𝐹 ∈ NrmGrp ∧ 𝐴 ∈ 𝐾 ) → ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) = 0 ↔ 𝐴 = 𝑂 ) ) |
| 31 | 8 9 30 | syl2anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) = 0 ↔ 𝐴 = 𝑂 ) ) |
| 32 | 1 17 3 | nmeq0 | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ) → ( ( ( norm ‘ 𝑊 ) ‘ 𝐵 ) = 0 ↔ 𝐵 = 0 ) ) |
| 33 | 15 16 32 | syl2anc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( norm ‘ 𝑊 ) ‘ 𝐵 ) = 0 ↔ 𝐵 = 0 ) ) |
| 34 | 31 33 | orbi12d | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( ( norm ‘ 𝐹 ) ‘ 𝐴 ) = 0 ∨ ( ( norm ‘ 𝑊 ) ‘ 𝐵 ) = 0 ) ↔ ( 𝐴 = 𝑂 ∨ 𝐵 = 0 ) ) ) |
| 35 | 21 29 34 | 3bitr3d | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 𝑂 ∨ 𝐵 = 0 ) ) ) |