This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity is the only element of the group with zero norm. First part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 24-Nov-2006) (Revised by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | |- X = ( Base ` G ) |
|
| nmf.n | |- N = ( norm ` G ) |
||
| nmeq0.z | |- .0. = ( 0g ` G ) |
||
| Assertion | nmeq0 | |- ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | |- X = ( Base ` G ) |
|
| 2 | nmf.n | |- N = ( norm ` G ) |
|
| 3 | nmeq0.z | |- .0. = ( 0g ` G ) |
|
| 4 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
| 5 | 2 1 3 4 | nmval | |- ( A e. X -> ( N ` A ) = ( A ( dist ` G ) .0. ) ) |
| 6 | 5 | adantl | |- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) = ( A ( dist ` G ) .0. ) ) |
| 7 | 6 | eqeq1d | |- ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> ( A ( dist ` G ) .0. ) = 0 ) ) |
| 8 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 9 | 8 | adantr | |- ( ( G e. NrmGrp /\ A e. X ) -> G e. Grp ) |
| 10 | 1 3 | grpidcl | |- ( G e. Grp -> .0. e. X ) |
| 11 | 9 10 | syl | |- ( ( G e. NrmGrp /\ A e. X ) -> .0. e. X ) |
| 12 | ngpxms | |- ( G e. NrmGrp -> G e. *MetSp ) |
|
| 13 | 1 4 | xmseq0 | |- ( ( G e. *MetSp /\ A e. X /\ .0. e. X ) -> ( ( A ( dist ` G ) .0. ) = 0 <-> A = .0. ) ) |
| 14 | 12 13 | syl3an1 | |- ( ( G e. NrmGrp /\ A e. X /\ .0. e. X ) -> ( ( A ( dist ` G ) .0. ) = 0 <-> A = .0. ) ) |
| 15 | 11 14 | mpd3an3 | |- ( ( G e. NrmGrp /\ A e. X ) -> ( ( A ( dist ` G ) .0. ) = 0 <-> A = .0. ) ) |
| 16 | 7 15 | bitrd | |- ( ( G e. NrmGrp /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = .0. ) ) |