This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural transformation is natural between opposite functors. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natoppf.o | |- O = ( oppCat ` C ) |
|
| natoppf.p | |- P = ( oppCat ` D ) |
||
| natoppf.n | |- N = ( C Nat D ) |
||
| natoppf.m | |- M = ( O Nat P ) |
||
| natoppfb.k | |- ( ph -> K = ( oppFunc ` F ) ) |
||
| natoppfb.l | |- ( ph -> L = ( oppFunc ` G ) ) |
||
| natoppf2.a | |- ( ph -> A e. ( F N G ) ) |
||
| Assertion | natoppf2 | |- ( ph -> A e. ( L M K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natoppf.o | |- O = ( oppCat ` C ) |
|
| 2 | natoppf.p | |- P = ( oppCat ` D ) |
|
| 3 | natoppf.n | |- N = ( C Nat D ) |
|
| 4 | natoppf.m | |- M = ( O Nat P ) |
|
| 5 | natoppfb.k | |- ( ph -> K = ( oppFunc ` F ) ) |
|
| 6 | natoppfb.l | |- ( ph -> L = ( oppFunc ` G ) ) |
|
| 7 | natoppf2.a | |- ( ph -> A e. ( F N G ) ) |
|
| 8 | 3 7 | nat1st2nd | |- ( ph -> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 9 | 1 2 3 4 8 | natoppf | |- ( ph -> A e. ( <. ( 1st ` G ) , tpos ( 2nd ` G ) >. M <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) ) |
| 10 | 3 | natrcl | |- ( A e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 11 | 10 | simprd | |- ( A e. ( F N G ) -> G e. ( C Func D ) ) |
| 12 | oppfval2 | |- ( G e. ( C Func D ) -> ( oppFunc ` G ) = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. ) |
|
| 13 | 7 11 12 | 3syl | |- ( ph -> ( oppFunc ` G ) = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. ) |
| 14 | 6 13 | eqtrd | |- ( ph -> L = <. ( 1st ` G ) , tpos ( 2nd ` G ) >. ) |
| 15 | 10 | simpld | |- ( A e. ( F N G ) -> F e. ( C Func D ) ) |
| 16 | oppfval2 | |- ( F e. ( C Func D ) -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) |
|
| 17 | 7 15 16 | 3syl | |- ( ph -> ( oppFunc ` F ) = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) |
| 18 | 5 17 | eqtrd | |- ( ph -> K = <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) |
| 19 | 14 18 | oveq12d | |- ( ph -> ( L M K ) = ( <. ( 1st ` G ) , tpos ( 2nd ` G ) >. M <. ( 1st ` F ) , tpos ( 2nd ` F ) >. ) ) |
| 20 | 9 19 | eleqtrrd | |- ( ph -> A e. ( L M K ) ) |