This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcco.b | |- B = ( Base ` C ) |
|
| oppcco.c | |- .x. = ( comp ` C ) |
||
| oppcco.o | |- O = ( oppCat ` C ) |
||
| oppcco.x | |- ( ph -> X e. B ) |
||
| oppcco.y | |- ( ph -> Y e. B ) |
||
| oppcco.z | |- ( ph -> Z e. B ) |
||
| Assertion | oppcco | |- ( ph -> ( G ( <. X , Y >. ( comp ` O ) Z ) F ) = ( F ( <. Z , Y >. .x. X ) G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcco.b | |- B = ( Base ` C ) |
|
| 2 | oppcco.c | |- .x. = ( comp ` C ) |
|
| 3 | oppcco.o | |- O = ( oppCat ` C ) |
|
| 4 | oppcco.x | |- ( ph -> X e. B ) |
|
| 5 | oppcco.y | |- ( ph -> Y e. B ) |
|
| 6 | oppcco.z | |- ( ph -> Z e. B ) |
|
| 7 | 1 2 3 4 5 6 | oppccofval | |- ( ph -> ( <. X , Y >. ( comp ` O ) Z ) = tpos ( <. Z , Y >. .x. X ) ) |
| 8 | 7 | oveqd | |- ( ph -> ( G ( <. X , Y >. ( comp ` O ) Z ) F ) = ( G tpos ( <. Z , Y >. .x. X ) F ) ) |
| 9 | ovtpos | |- ( G tpos ( <. Z , Y >. .x. X ) F ) = ( F ( <. Z , Y >. .x. X ) G ) |
|
| 10 | 8 9 | eqtrdi | |- ( ph -> ( G ( <. X , Y >. ( comp ` O ) Z ) F ) = ( F ( <. Z , Y >. .x. X ) G ) ) |