This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a natural transformation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnatd.1 | |- N = ( C Nat D ) |
|
| isnatd.b | |- B = ( Base ` C ) |
||
| isnatd.h | |- H = ( Hom ` C ) |
||
| isnatd.j | |- J = ( Hom ` D ) |
||
| isnatd.o | |- .x. = ( comp ` D ) |
||
| isnatd.f | |- ( ph -> F ( C Func D ) G ) |
||
| isnatd.g | |- ( ph -> K ( C Func D ) L ) |
||
| isnatd.a | |- ( ph -> A Fn B ) |
||
| isnatd.2 | |- ( ( ph /\ x e. B ) -> ( A ` x ) e. ( ( F ` x ) J ( K ` x ) ) ) |
||
| isnatd.3 | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ h e. ( x H y ) ) -> ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) |
||
| Assertion | isnatd | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnatd.1 | |- N = ( C Nat D ) |
|
| 2 | isnatd.b | |- B = ( Base ` C ) |
|
| 3 | isnatd.h | |- H = ( Hom ` C ) |
|
| 4 | isnatd.j | |- J = ( Hom ` D ) |
|
| 5 | isnatd.o | |- .x. = ( comp ` D ) |
|
| 6 | isnatd.f | |- ( ph -> F ( C Func D ) G ) |
|
| 7 | isnatd.g | |- ( ph -> K ( C Func D ) L ) |
|
| 8 | isnatd.a | |- ( ph -> A Fn B ) |
|
| 9 | isnatd.2 | |- ( ( ph /\ x e. B ) -> ( A ` x ) e. ( ( F ` x ) J ( K ` x ) ) ) |
|
| 10 | isnatd.3 | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ h e. ( x H y ) ) -> ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) |
|
| 11 | dffn5 | |- ( A Fn B <-> A = ( x e. B |-> ( A ` x ) ) ) |
|
| 12 | 8 11 | sylib | |- ( ph -> A = ( x e. B |-> ( A ` x ) ) ) |
| 13 | 2 | fvexi | |- B e. _V |
| 14 | 13 | mptex | |- ( x e. B |-> ( A ` x ) ) e. _V |
| 15 | 12 14 | eqeltrdi | |- ( ph -> A e. _V ) |
| 16 | 9 | ralrimiva | |- ( ph -> A. x e. B ( A ` x ) e. ( ( F ` x ) J ( K ` x ) ) ) |
| 17 | elixp2 | |- ( A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) <-> ( A e. _V /\ A Fn B /\ A. x e. B ( A ` x ) e. ( ( F ` x ) J ( K ` x ) ) ) ) |
|
| 18 | 15 8 16 17 | syl3anbrc | |- ( ph -> A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) ) |
| 19 | 10 | ralrimiva | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> A. h e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) |
| 20 | 19 | ralrimivva | |- ( ph -> A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) |
| 21 | 1 2 3 4 5 6 7 | isnat | |- ( ph -> ( A e. ( <. F , G >. N <. K , L >. ) <-> ( A e. X_ x e. B ( ( F ` x ) J ( K ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( F ` x ) , ( F ` y ) >. .x. ( K ` y ) ) ( ( x G y ) ` h ) ) = ( ( ( x L y ) ` h ) ( <. ( F ` x ) , ( K ` x ) >. .x. ( K ` y ) ) ( A ` x ) ) ) ) ) |
| 22 | 18 20 21 | mpbir2and | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |