This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulresr | |- ( ( A e. R. /\ B e. R. ) -> ( <. A , 0R >. x. <. B , 0R >. ) = <. ( A .R B ) , 0R >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r | |- 0R e. R. |
|
| 2 | mulcnsr | |- ( ( ( A e. R. /\ 0R e. R. ) /\ ( B e. R. /\ 0R e. R. ) ) -> ( <. A , 0R >. x. <. B , 0R >. ) = <. ( ( A .R B ) +R ( -1R .R ( 0R .R 0R ) ) ) , ( ( 0R .R B ) +R ( A .R 0R ) ) >. ) |
|
| 3 | 2 | an4s | |- ( ( ( A e. R. /\ B e. R. ) /\ ( 0R e. R. /\ 0R e. R. ) ) -> ( <. A , 0R >. x. <. B , 0R >. ) = <. ( ( A .R B ) +R ( -1R .R ( 0R .R 0R ) ) ) , ( ( 0R .R B ) +R ( A .R 0R ) ) >. ) |
| 4 | 1 1 3 | mpanr12 | |- ( ( A e. R. /\ B e. R. ) -> ( <. A , 0R >. x. <. B , 0R >. ) = <. ( ( A .R B ) +R ( -1R .R ( 0R .R 0R ) ) ) , ( ( 0R .R B ) +R ( A .R 0R ) ) >. ) |
| 5 | 00sr | |- ( 0R e. R. -> ( 0R .R 0R ) = 0R ) |
|
| 6 | 1 5 | ax-mp | |- ( 0R .R 0R ) = 0R |
| 7 | 6 | oveq2i | |- ( -1R .R ( 0R .R 0R ) ) = ( -1R .R 0R ) |
| 8 | m1r | |- -1R e. R. |
|
| 9 | 00sr | |- ( -1R e. R. -> ( -1R .R 0R ) = 0R ) |
|
| 10 | 8 9 | ax-mp | |- ( -1R .R 0R ) = 0R |
| 11 | 7 10 | eqtri | |- ( -1R .R ( 0R .R 0R ) ) = 0R |
| 12 | 11 | oveq2i | |- ( ( A .R B ) +R ( -1R .R ( 0R .R 0R ) ) ) = ( ( A .R B ) +R 0R ) |
| 13 | mulclsr | |- ( ( A e. R. /\ B e. R. ) -> ( A .R B ) e. R. ) |
|
| 14 | 0idsr | |- ( ( A .R B ) e. R. -> ( ( A .R B ) +R 0R ) = ( A .R B ) ) |
|
| 15 | 13 14 | syl | |- ( ( A e. R. /\ B e. R. ) -> ( ( A .R B ) +R 0R ) = ( A .R B ) ) |
| 16 | 12 15 | eqtrid | |- ( ( A e. R. /\ B e. R. ) -> ( ( A .R B ) +R ( -1R .R ( 0R .R 0R ) ) ) = ( A .R B ) ) |
| 17 | mulcomsr | |- ( 0R .R B ) = ( B .R 0R ) |
|
| 18 | 00sr | |- ( B e. R. -> ( B .R 0R ) = 0R ) |
|
| 19 | 17 18 | eqtrid | |- ( B e. R. -> ( 0R .R B ) = 0R ) |
| 20 | 00sr | |- ( A e. R. -> ( A .R 0R ) = 0R ) |
|
| 21 | 19 20 | oveqan12rd | |- ( ( A e. R. /\ B e. R. ) -> ( ( 0R .R B ) +R ( A .R 0R ) ) = ( 0R +R 0R ) ) |
| 22 | 0idsr | |- ( 0R e. R. -> ( 0R +R 0R ) = 0R ) |
|
| 23 | 1 22 | ax-mp | |- ( 0R +R 0R ) = 0R |
| 24 | 21 23 | eqtrdi | |- ( ( A e. R. /\ B e. R. ) -> ( ( 0R .R B ) +R ( A .R 0R ) ) = 0R ) |
| 25 | 16 24 | opeq12d | |- ( ( A e. R. /\ B e. R. ) -> <. ( ( A .R B ) +R ( -1R .R ( 0R .R 0R ) ) ) , ( ( 0R .R B ) +R ( A .R 0R ) ) >. = <. ( A .R B ) , 0R >. ) |
| 26 | 4 25 | eqtrd | |- ( ( A e. R. /\ B e. R. ) -> ( <. A , 0R >. x. <. B , 0R >. ) = <. ( A .R B ) , 0R >. ) |