This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulresr | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 〈 𝐴 , 0R 〉 · 〈 𝐵 , 0R 〉 ) = 〈 ( 𝐴 ·R 𝐵 ) , 0R 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r | ⊢ 0R ∈ R | |
| 2 | mulcnsr | ⊢ ( ( ( 𝐴 ∈ R ∧ 0R ∈ R ) ∧ ( 𝐵 ∈ R ∧ 0R ∈ R ) ) → ( 〈 𝐴 , 0R 〉 · 〈 𝐵 , 0R 〉 ) = 〈 ( ( 𝐴 ·R 𝐵 ) +R ( -1R ·R ( 0R ·R 0R ) ) ) , ( ( 0R ·R 𝐵 ) +R ( 𝐴 ·R 0R ) ) 〉 ) | |
| 3 | 2 | an4s | ⊢ ( ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) ∧ ( 0R ∈ R ∧ 0R ∈ R ) ) → ( 〈 𝐴 , 0R 〉 · 〈 𝐵 , 0R 〉 ) = 〈 ( ( 𝐴 ·R 𝐵 ) +R ( -1R ·R ( 0R ·R 0R ) ) ) , ( ( 0R ·R 𝐵 ) +R ( 𝐴 ·R 0R ) ) 〉 ) |
| 4 | 1 1 3 | mpanr12 | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 〈 𝐴 , 0R 〉 · 〈 𝐵 , 0R 〉 ) = 〈 ( ( 𝐴 ·R 𝐵 ) +R ( -1R ·R ( 0R ·R 0R ) ) ) , ( ( 0R ·R 𝐵 ) +R ( 𝐴 ·R 0R ) ) 〉 ) |
| 5 | 00sr | ⊢ ( 0R ∈ R → ( 0R ·R 0R ) = 0R ) | |
| 6 | 1 5 | ax-mp | ⊢ ( 0R ·R 0R ) = 0R |
| 7 | 6 | oveq2i | ⊢ ( -1R ·R ( 0R ·R 0R ) ) = ( -1R ·R 0R ) |
| 8 | m1r | ⊢ -1R ∈ R | |
| 9 | 00sr | ⊢ ( -1R ∈ R → ( -1R ·R 0R ) = 0R ) | |
| 10 | 8 9 | ax-mp | ⊢ ( -1R ·R 0R ) = 0R |
| 11 | 7 10 | eqtri | ⊢ ( -1R ·R ( 0R ·R 0R ) ) = 0R |
| 12 | 11 | oveq2i | ⊢ ( ( 𝐴 ·R 𝐵 ) +R ( -1R ·R ( 0R ·R 0R ) ) ) = ( ( 𝐴 ·R 𝐵 ) +R 0R ) |
| 13 | mulclsr | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 𝐴 ·R 𝐵 ) ∈ R ) | |
| 14 | 0idsr | ⊢ ( ( 𝐴 ·R 𝐵 ) ∈ R → ( ( 𝐴 ·R 𝐵 ) +R 0R ) = ( 𝐴 ·R 𝐵 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( ( 𝐴 ·R 𝐵 ) +R 0R ) = ( 𝐴 ·R 𝐵 ) ) |
| 16 | 12 15 | eqtrid | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( ( 𝐴 ·R 𝐵 ) +R ( -1R ·R ( 0R ·R 0R ) ) ) = ( 𝐴 ·R 𝐵 ) ) |
| 17 | mulcomsr | ⊢ ( 0R ·R 𝐵 ) = ( 𝐵 ·R 0R ) | |
| 18 | 00sr | ⊢ ( 𝐵 ∈ R → ( 𝐵 ·R 0R ) = 0R ) | |
| 19 | 17 18 | eqtrid | ⊢ ( 𝐵 ∈ R → ( 0R ·R 𝐵 ) = 0R ) |
| 20 | 00sr | ⊢ ( 𝐴 ∈ R → ( 𝐴 ·R 0R ) = 0R ) | |
| 21 | 19 20 | oveqan12rd | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( ( 0R ·R 𝐵 ) +R ( 𝐴 ·R 0R ) ) = ( 0R +R 0R ) ) |
| 22 | 0idsr | ⊢ ( 0R ∈ R → ( 0R +R 0R ) = 0R ) | |
| 23 | 1 22 | ax-mp | ⊢ ( 0R +R 0R ) = 0R |
| 24 | 21 23 | eqtrdi | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( ( 0R ·R 𝐵 ) +R ( 𝐴 ·R 0R ) ) = 0R ) |
| 25 | 16 24 | opeq12d | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → 〈 ( ( 𝐴 ·R 𝐵 ) +R ( -1R ·R ( 0R ·R 0R ) ) ) , ( ( 0R ·R 𝐵 ) +R ( 𝐴 ·R 0R ) ) 〉 = 〈 ( 𝐴 ·R 𝐵 ) , 0R 〉 ) |
| 26 | 4 25 | eqtrd | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 〈 𝐴 , 0R 〉 · 〈 𝐵 , 0R 〉 ) = 〈 ( 𝐴 ·R 𝐵 ) , 0R 〉 ) |