This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltresr | |- ( <. A , 0R >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelre | |- |
|
| 2 | 1 | brel | |- ( <. A , 0R >. |
| 3 | opelreal | |- ( <. A , 0R >. e. RR <-> A e. R. ) |
|
| 4 | opelreal | |- ( <. B , 0R >. e. RR <-> B e. R. ) |
|
| 5 | 3 4 | anbi12i | |- ( ( <. A , 0R >. e. RR /\ <. B , 0R >. e. RR ) <-> ( A e. R. /\ B e. R. ) ) |
| 6 | 2 5 | sylib | |- ( <. A , 0R >. |
| 7 | ltrelsr | |- |
|
| 8 | 7 | brel | |- ( A |
| 9 | opex | |- <. A , 0R >. e. _V |
|
| 10 | opex | |- <. B , 0R >. e. _V |
|
| 11 | eleq1 | |- ( x = <. A , 0R >. -> ( x e. RR <-> <. A , 0R >. e. RR ) ) |
|
| 12 | 11 | anbi1d | |- ( x = <. A , 0R >. -> ( ( x e. RR /\ y e. RR ) <-> ( <. A , 0R >. e. RR /\ y e. RR ) ) ) |
| 13 | eqeq1 | |- ( x = <. A , 0R >. -> ( x = <. z , 0R >. <-> <. A , 0R >. = <. z , 0R >. ) ) |
|
| 14 | 13 | anbi1d | |- ( x = <. A , 0R >. -> ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) <-> ( <. A , 0R >. = <. z , 0R >. /\ y = <. w , 0R >. ) ) ) |
| 15 | 14 | anbi1d | |- ( x = <. A , 0R >. -> ( ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z |
| 16 | 15 | 2exbidv | |- ( x = <. A , 0R >. -> ( E. z E. w ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z |
| 17 | 12 16 | anbi12d | |- ( x = <. A , 0R >. -> ( ( ( x e. RR /\ y e. RR ) /\ E. z E. w ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z |
| 18 | eleq1 | |- ( y = <. B , 0R >. -> ( y e. RR <-> <. B , 0R >. e. RR ) ) |
|
| 19 | 18 | anbi2d | |- ( y = <. B , 0R >. -> ( ( <. A , 0R >. e. RR /\ y e. RR ) <-> ( <. A , 0R >. e. RR /\ <. B , 0R >. e. RR ) ) ) |
| 20 | eqeq1 | |- ( y = <. B , 0R >. -> ( y = <. w , 0R >. <-> <. B , 0R >. = <. w , 0R >. ) ) |
|
| 21 | 20 | anbi2d | |- ( y = <. B , 0R >. -> ( ( <. A , 0R >. = <. z , 0R >. /\ y = <. w , 0R >. ) <-> ( <. A , 0R >. = <. z , 0R >. /\ <. B , 0R >. = <. w , 0R >. ) ) ) |
| 22 | 21 | anbi1d | |- ( y = <. B , 0R >. -> ( ( ( <. A , 0R >. = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z |
| 23 | 22 | 2exbidv | |- ( y = <. B , 0R >. -> ( E. z E. w ( ( <. A , 0R >. = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z |
| 24 | 19 23 | anbi12d | |- ( y = <. B , 0R >. -> ( ( ( <. A , 0R >. e. RR /\ y e. RR ) /\ E. z E. w ( ( <. A , 0R >. = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z |
| 25 | df-lt | |- |
|
| 26 | 9 10 17 24 25 | brab | |- ( <. A , 0R >. |
| 27 | 26 | baib | |- ( ( <. A , 0R >. e. RR /\ <. B , 0R >. e. RR ) -> ( <. A , 0R >. |
| 28 | vex | |- z e. _V |
|
| 29 | 28 | eqresr | |- ( <. z , 0R >. = <. A , 0R >. <-> z = A ) |
| 30 | eqcom | |- ( <. A , 0R >. = <. z , 0R >. <-> <. z , 0R >. = <. A , 0R >. ) |
|
| 31 | eqcom | |- ( A = z <-> z = A ) |
|
| 32 | 29 30 31 | 3bitr4i | |- ( <. A , 0R >. = <. z , 0R >. <-> A = z ) |
| 33 | vex | |- w e. _V |
|
| 34 | 33 | eqresr | |- ( <. w , 0R >. = <. B , 0R >. <-> w = B ) |
| 35 | eqcom | |- ( <. B , 0R >. = <. w , 0R >. <-> <. w , 0R >. = <. B , 0R >. ) |
|
| 36 | eqcom | |- ( B = w <-> w = B ) |
|
| 37 | 34 35 36 | 3bitr4i | |- ( <. B , 0R >. = <. w , 0R >. <-> B = w ) |
| 38 | 32 37 | anbi12i | |- ( ( <. A , 0R >. = <. z , 0R >. /\ <. B , 0R >. = <. w , 0R >. ) <-> ( A = z /\ B = w ) ) |
| 39 | 28 33 | opth2 | |- ( <. A , B >. = <. z , w >. <-> ( A = z /\ B = w ) ) |
| 40 | 38 39 | bitr4i | |- ( ( <. A , 0R >. = <. z , 0R >. /\ <. B , 0R >. = <. w , 0R >. ) <-> <. A , B >. = <. z , w >. ) |
| 41 | 40 | anbi1i | |- ( ( ( <. A , 0R >. = <. z , 0R >. /\ <. B , 0R >. = <. w , 0R >. ) /\ z |
| 42 | 41 | 2exbii | |- ( E. z E. w ( ( <. A , 0R >. = <. z , 0R >. /\ <. B , 0R >. = <. w , 0R >. ) /\ z |
| 43 | 27 42 | bitrdi | |- ( ( <. A , 0R >. e. RR /\ <. B , 0R >. e. RR ) -> ( <. A , 0R >. |
| 44 | 3 4 43 | syl2anbr | |- ( ( A e. R. /\ B e. R. ) -> ( <. A , 0R >. |
| 45 | breq12 | |- ( ( z = A /\ w = B ) -> ( z |
|
| 46 | 45 | copsex2g | |- ( ( A e. R. /\ B e. R. ) -> ( E. z E. w ( <. A , B >. = <. z , w >. /\ z |
| 47 | 44 46 | bitrd | |- ( ( A e. R. /\ B e. R. ) -> ( <. A , 0R >. |
| 48 | 6 8 47 | pm5.21nii | |- ( <. A , 0R >. |