This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of Gleason p. 123. (Contributed by NM, 9-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcanpr | |- ( ( A e. P. /\ B e. P. ) -> ( ( A +P. B ) = ( A +P. C ) -> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addclpr | |- ( ( A e. P. /\ B e. P. ) -> ( A +P. B ) e. P. ) |
|
| 2 | eleq1 | |- ( ( A +P. B ) = ( A +P. C ) -> ( ( A +P. B ) e. P. <-> ( A +P. C ) e. P. ) ) |
|
| 3 | dmplp | |- dom +P. = ( P. X. P. ) |
|
| 4 | 0npr | |- -. (/) e. P. |
|
| 5 | 3 4 | ndmovrcl | |- ( ( A +P. C ) e. P. -> ( A e. P. /\ C e. P. ) ) |
| 6 | 2 5 | biimtrdi | |- ( ( A +P. B ) = ( A +P. C ) -> ( ( A +P. B ) e. P. -> ( A e. P. /\ C e. P. ) ) ) |
| 7 | 1 6 | syl5com | |- ( ( A e. P. /\ B e. P. ) -> ( ( A +P. B ) = ( A +P. C ) -> ( A e. P. /\ C e. P. ) ) ) |
| 8 | ltapr | |- ( A e. P. -> ( B |
|
| 9 | ltapr | |- ( A e. P. -> ( C |
|
| 10 | 8 9 | orbi12d | |- ( A e. P. -> ( ( B |
| 11 | 10 | notbid | |- ( A e. P. -> ( -. ( B |
| 12 | 11 | ad2antrr | |- ( ( ( A e. P. /\ B e. P. ) /\ ( A e. P. /\ C e. P. ) ) -> ( -. ( B |
| 13 | ltsopr | |- |
|
| 14 | sotrieq | |- ( ( |
|
| 15 | 13 14 | mpan | |- ( ( B e. P. /\ C e. P. ) -> ( B = C <-> -. ( B |
| 16 | 15 | ad2ant2l | |- ( ( ( A e. P. /\ B e. P. ) /\ ( A e. P. /\ C e. P. ) ) -> ( B = C <-> -. ( B |
| 17 | addclpr | |- ( ( A e. P. /\ C e. P. ) -> ( A +P. C ) e. P. ) |
|
| 18 | sotrieq | |- ( ( |
|
| 19 | 13 18 | mpan | |- ( ( ( A +P. B ) e. P. /\ ( A +P. C ) e. P. ) -> ( ( A +P. B ) = ( A +P. C ) <-> -. ( ( A +P. B ) |
| 20 | 1 17 19 | syl2an | |- ( ( ( A e. P. /\ B e. P. ) /\ ( A e. P. /\ C e. P. ) ) -> ( ( A +P. B ) = ( A +P. C ) <-> -. ( ( A +P. B ) |
| 21 | 12 16 20 | 3bitr4d | |- ( ( ( A e. P. /\ B e. P. ) /\ ( A e. P. /\ C e. P. ) ) -> ( B = C <-> ( A +P. B ) = ( A +P. C ) ) ) |
| 22 | 21 | exbiri | |- ( ( A e. P. /\ B e. P. ) -> ( ( A e. P. /\ C e. P. ) -> ( ( A +P. B ) = ( A +P. C ) -> B = C ) ) ) |
| 23 | 7 22 | syld | |- ( ( A e. P. /\ B e. P. ) -> ( ( A +P. B ) = ( A +P. C ) -> ( ( A +P. B ) = ( A +P. C ) -> B = C ) ) ) |
| 24 | 23 | pm2.43d | |- ( ( A e. P. /\ B e. P. ) -> ( ( A +P. B ) = ( A +P. C ) -> B = C ) ) |