This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 31-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulginvcom.b | |- B = ( Base ` G ) |
|
| mulginvcom.t | |- .x. = ( .g ` G ) |
||
| mulginvcom.i | |- I = ( invg ` G ) |
||
| Assertion | mulginvinv | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( N .x. ( I ` X ) ) ) = ( N .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulginvcom.b | |- B = ( Base ` G ) |
|
| 2 | mulginvcom.t | |- .x. = ( .g ` G ) |
|
| 3 | mulginvcom.i | |- I = ( invg ` G ) |
|
| 4 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( I ` X ) e. B ) |
| 5 | 4 | 3adant2 | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` X ) e. B ) |
| 6 | 1 2 3 | mulginvcom | |- ( ( G e. Grp /\ N e. ZZ /\ ( I ` X ) e. B ) -> ( N .x. ( I ` ( I ` X ) ) ) = ( I ` ( N .x. ( I ` X ) ) ) ) |
| 7 | 5 6 | syld3an3 | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. ( I ` ( I ` X ) ) ) = ( I ` ( N .x. ( I ` X ) ) ) ) |
| 8 | 1 3 | grpinvinv | |- ( ( G e. Grp /\ X e. B ) -> ( I ` ( I ` X ) ) = X ) |
| 9 | 8 | 3adant2 | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( I ` X ) ) = X ) |
| 10 | 9 | oveq2d | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. ( I ` ( I ` X ) ) ) = ( N .x. X ) ) |
| 11 | 7 10 | eqtr3d | |- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( N .x. ( I ` X ) ) ) = ( N .x. X ) ) |