This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Möbius function takes on values in magnitude at most 1 . (Together with mucl , this implies that it takes a value in { -u 1 , 0 , 1 } for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mule1 | |- ( A e. NN -> ( abs ` ( mmu ` A ) ) <_ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muval | |- ( A e. NN -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
|
| 2 | iftrue | |- ( E. p e. Prime ( p ^ 2 ) || A -> if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 0 ) |
|
| 3 | 1 2 | sylan9eq | |- ( ( A e. NN /\ E. p e. Prime ( p ^ 2 ) || A ) -> ( mmu ` A ) = 0 ) |
| 4 | 3 | fveq2d | |- ( ( A e. NN /\ E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) = ( abs ` 0 ) ) |
| 5 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 6 | 0le1 | |- 0 <_ 1 |
|
| 7 | 5 6 | eqbrtri | |- ( abs ` 0 ) <_ 1 |
| 8 | 4 7 | eqbrtrdi | |- ( ( A e. NN /\ E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) <_ 1 ) |
| 9 | iffalse | |- ( -. E. p e. Prime ( p ^ 2 ) || A -> if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
|
| 10 | 1 9 | sylan9eq | |- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( mmu ` A ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
| 11 | 10 | fveq2d | |- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) = ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
| 12 | neg1cn | |- -u 1 e. CC |
|
| 13 | prmdvdsfi | |- ( A e. NN -> { p e. Prime | p || A } e. Fin ) |
|
| 14 | hashcl | |- ( { p e. Prime | p || A } e. Fin -> ( # ` { p e. Prime | p || A } ) e. NN0 ) |
|
| 15 | 13 14 | syl | |- ( A e. NN -> ( # ` { p e. Prime | p || A } ) e. NN0 ) |
| 16 | absexp | |- ( ( -u 1 e. CC /\ ( # ` { p e. Prime | p || A } ) e. NN0 ) -> ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = ( ( abs ` -u 1 ) ^ ( # ` { p e. Prime | p || A } ) ) ) |
|
| 17 | 12 15 16 | sylancr | |- ( A e. NN -> ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = ( ( abs ` -u 1 ) ^ ( # ` { p e. Prime | p || A } ) ) ) |
| 18 | ax-1cn | |- 1 e. CC |
|
| 19 | 18 | absnegi | |- ( abs ` -u 1 ) = ( abs ` 1 ) |
| 20 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 21 | 19 20 | eqtri | |- ( abs ` -u 1 ) = 1 |
| 22 | 21 | oveq1i | |- ( ( abs ` -u 1 ) ^ ( # ` { p e. Prime | p || A } ) ) = ( 1 ^ ( # ` { p e. Prime | p || A } ) ) |
| 23 | 15 | nn0zd | |- ( A e. NN -> ( # ` { p e. Prime | p || A } ) e. ZZ ) |
| 24 | 1exp | |- ( ( # ` { p e. Prime | p || A } ) e. ZZ -> ( 1 ^ ( # ` { p e. Prime | p || A } ) ) = 1 ) |
|
| 25 | 23 24 | syl | |- ( A e. NN -> ( 1 ^ ( # ` { p e. Prime | p || A } ) ) = 1 ) |
| 26 | 22 25 | eqtrid | |- ( A e. NN -> ( ( abs ` -u 1 ) ^ ( # ` { p e. Prime | p || A } ) ) = 1 ) |
| 27 | 17 26 | eqtrd | |- ( A e. NN -> ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 1 ) |
| 28 | 27 | adantr | |- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 1 ) |
| 29 | 11 28 | eqtrd | |- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) = 1 ) |
| 30 | 1le1 | |- 1 <_ 1 |
|
| 31 | 29 30 | eqbrtrdi | |- ( ( A e. NN /\ -. E. p e. Prime ( p ^ 2 ) || A ) -> ( abs ` ( mmu ` A ) ) <_ 1 ) |
| 32 | 8 31 | pm2.61dan | |- ( A e. NN -> ( abs ` ( mmu ` A ) ) <_ 1 ) |