This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Möbius function takes on values in magnitude at most 1 . (Together with mucl , this implies that it takes a value in { -u 1 , 0 , 1 } for every positive integer.) (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mule1 | ⊢ ( 𝐴 ∈ ℕ → ( abs ‘ ( μ ‘ 𝐴 ) ) ≤ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muval | ⊢ ( 𝐴 ∈ ℕ → ( μ ‘ 𝐴 ) = if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) | |
| 2 | iftrue | ⊢ ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 0 ) | |
| 3 | 1 2 | sylan9eq | ⊢ ( ( 𝐴 ∈ ℕ ∧ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( μ ‘ 𝐴 ) = 0 ) |
| 4 | 3 | fveq2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( abs ‘ ( μ ‘ 𝐴 ) ) = ( abs ‘ 0 ) ) |
| 5 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 6 | 0le1 | ⊢ 0 ≤ 1 | |
| 7 | 5 6 | eqbrtri | ⊢ ( abs ‘ 0 ) ≤ 1 |
| 8 | 4 7 | eqbrtrdi | ⊢ ( ( 𝐴 ∈ ℕ ∧ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( abs ‘ ( μ ‘ 𝐴 ) ) ≤ 1 ) |
| 9 | iffalse | ⊢ ( ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) | |
| 10 | 1 9 | sylan9eq | ⊢ ( ( 𝐴 ∈ ℕ ∧ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |
| 11 | 10 | fveq2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( abs ‘ ( μ ‘ 𝐴 ) ) = ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
| 12 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 13 | prmdvdsfi | ⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) | |
| 14 | hashcl | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
| 16 | absexp | ⊢ ( ( - 1 ∈ ℂ ∧ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) → ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = ( ( abs ‘ - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) | |
| 17 | 12 15 16 | sylancr | ⊢ ( 𝐴 ∈ ℕ → ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = ( ( abs ‘ - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |
| 18 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 19 | 18 | absnegi | ⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
| 20 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 21 | 19 20 | eqtri | ⊢ ( abs ‘ - 1 ) = 1 |
| 22 | 21 | oveq1i | ⊢ ( ( abs ‘ - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) = ( 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) |
| 23 | 15 | nn0zd | ⊢ ( 𝐴 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℤ ) |
| 24 | 1exp | ⊢ ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℤ → ( 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) = 1 ) | |
| 25 | 23 24 | syl | ⊢ ( 𝐴 ∈ ℕ → ( 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) = 1 ) |
| 26 | 22 25 | eqtrid | ⊢ ( 𝐴 ∈ ℕ → ( ( abs ‘ - 1 ) ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) = 1 ) |
| 27 | 17 26 | eqtrd | ⊢ ( 𝐴 ∈ ℕ → ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 1 ) |
| 28 | 27 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( abs ‘ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 1 ) |
| 29 | 11 28 | eqtrd | ⊢ ( ( 𝐴 ∈ ℕ ∧ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( abs ‘ ( μ ‘ 𝐴 ) ) = 1 ) |
| 30 | 1le1 | ⊢ 1 ≤ 1 | |
| 31 | 29 30 | eqbrtrdi | ⊢ ( ( 𝐴 ∈ ℕ ∧ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) → ( abs ‘ ( μ ‘ 𝐴 ) ) ≤ 1 ) |
| 32 | 8 31 | pm2.61dan | ⊢ ( 𝐴 ∈ ℕ → ( abs ‘ ( μ ‘ 𝐴 ) ) ≤ 1 ) |