This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muval | |- ( A e. NN -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( x = A -> ( ( p ^ 2 ) || x <-> ( p ^ 2 ) || A ) ) |
|
| 2 | 1 | rexbidv | |- ( x = A -> ( E. p e. Prime ( p ^ 2 ) || x <-> E. p e. Prime ( p ^ 2 ) || A ) ) |
| 3 | breq2 | |- ( x = A -> ( p || x <-> p || A ) ) |
|
| 4 | 3 | rabbidv | |- ( x = A -> { p e. Prime | p || x } = { p e. Prime | p || A } ) |
| 5 | 4 | fveq2d | |- ( x = A -> ( # ` { p e. Prime | p || x } ) = ( # ` { p e. Prime | p || A } ) ) |
| 6 | 5 | oveq2d | |- ( x = A -> ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) = ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) |
| 7 | 2 6 | ifbieq2d | |- ( x = A -> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
| 8 | df-mu | |- mmu = ( x e. NN |-> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) ) |
|
| 9 | c0ex | |- 0 e. _V |
|
| 10 | ovex | |- ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) e. _V |
|
| 11 | 9 10 | ifex | |- if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) e. _V |
| 12 | 7 8 11 | fvmpt | |- ( A e. NN -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |