This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtfl | |- ( A e. RR -> ( theta ` ( |_ ` A ) ) = ( theta ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flidm | |- ( A e. RR -> ( |_ ` ( |_ ` A ) ) = ( |_ ` A ) ) |
|
| 2 | 1 | oveq2d | |- ( A e. RR -> ( 2 ... ( |_ ` ( |_ ` A ) ) ) = ( 2 ... ( |_ ` A ) ) ) |
| 3 | 2 | ineq1d | |- ( A e. RR -> ( ( 2 ... ( |_ ` ( |_ ` A ) ) ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 4 | reflcl | |- ( A e. RR -> ( |_ ` A ) e. RR ) |
|
| 5 | ppisval | |- ( ( |_ ` A ) e. RR -> ( ( 0 [,] ( |_ ` A ) ) i^i Prime ) = ( ( 2 ... ( |_ ` ( |_ ` A ) ) ) i^i Prime ) ) |
|
| 6 | 4 5 | syl | |- ( A e. RR -> ( ( 0 [,] ( |_ ` A ) ) i^i Prime ) = ( ( 2 ... ( |_ ` ( |_ ` A ) ) ) i^i Prime ) ) |
| 7 | ppisval | |- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
|
| 8 | 3 6 7 | 3eqtr4d | |- ( A e. RR -> ( ( 0 [,] ( |_ ` A ) ) i^i Prime ) = ( ( 0 [,] A ) i^i Prime ) ) |
| 9 | 8 | sumeq1d | |- ( A e. RR -> sum_ p e. ( ( 0 [,] ( |_ ` A ) ) i^i Prime ) ( log ` p ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
| 10 | chtval | |- ( ( |_ ` A ) e. RR -> ( theta ` ( |_ ` A ) ) = sum_ p e. ( ( 0 [,] ( |_ ` A ) ) i^i Prime ) ( log ` p ) ) |
|
| 11 | 4 10 | syl | |- ( A e. RR -> ( theta ` ( |_ ` A ) ) = sum_ p e. ( ( 0 [,] ( |_ ` A ) ) i^i Prime ) ( log ` p ) ) |
| 12 | chtval | |- ( A e. RR -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
|
| 13 | 9 11 12 | 3eqtr4d | |- ( A e. RR -> ( theta ` ( |_ ` A ) ) = ( theta ` A ) ) |