This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex exponentiation of a product. Proposition 10-4.2(c) of Gleason p. 135. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcxp | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> A e. RR ) |
|
| 2 | 1 | recnd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> A e. CC ) |
| 3 | 2 | mul01d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( A x. 0 ) = 0 ) |
| 4 | 3 | oveq1d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( A x. 0 ) ^c C ) = ( 0 ^c C ) ) |
| 5 | simp3 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> C e. CC ) |
|
| 6 | 2 5 | mulcxplem | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( 0 ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) ) |
| 7 | 4 6 | eqtrd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( A x. 0 ) ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) ) |
| 8 | oveq2 | |- ( B = 0 -> ( A x. B ) = ( A x. 0 ) ) |
|
| 9 | 8 | oveq1d | |- ( B = 0 -> ( ( A x. B ) ^c C ) = ( ( A x. 0 ) ^c C ) ) |
| 10 | oveq1 | |- ( B = 0 -> ( B ^c C ) = ( 0 ^c C ) ) |
|
| 11 | 10 | oveq2d | |- ( B = 0 -> ( ( A ^c C ) x. ( B ^c C ) ) = ( ( A ^c C ) x. ( 0 ^c C ) ) ) |
| 12 | 9 11 | eqeq12d | |- ( B = 0 -> ( ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) <-> ( ( A x. 0 ) ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) ) ) |
| 13 | 7 12 | syl5ibrcom | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( B = 0 -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) ) |
| 14 | simp2l | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> B e. RR ) |
|
| 15 | 14 | recnd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> B e. CC ) |
| 16 | 15 | mul02d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( 0 x. B ) = 0 ) |
| 17 | 16 | oveq1d | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( 0 x. B ) ^c C ) = ( 0 ^c C ) ) |
| 18 | 15 5 | mulcxplem | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( 0 ^c C ) = ( ( B ^c C ) x. ( 0 ^c C ) ) ) |
| 19 | cxpcl | |- ( ( B e. CC /\ C e. CC ) -> ( B ^c C ) e. CC ) |
|
| 20 | 15 5 19 | syl2anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( B ^c C ) e. CC ) |
| 21 | 0cn | |- 0 e. CC |
|
| 22 | cxpcl | |- ( ( 0 e. CC /\ C e. CC ) -> ( 0 ^c C ) e. CC ) |
|
| 23 | 21 5 22 | sylancr | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( 0 ^c C ) e. CC ) |
| 24 | 20 23 | mulcomd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( B ^c C ) x. ( 0 ^c C ) ) = ( ( 0 ^c C ) x. ( B ^c C ) ) ) |
| 25 | 18 24 | eqtrd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( 0 ^c C ) = ( ( 0 ^c C ) x. ( B ^c C ) ) ) |
| 26 | 17 25 | eqtrd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( 0 x. B ) ^c C ) = ( ( 0 ^c C ) x. ( B ^c C ) ) ) |
| 27 | oveq1 | |- ( A = 0 -> ( A x. B ) = ( 0 x. B ) ) |
|
| 28 | 27 | oveq1d | |- ( A = 0 -> ( ( A x. B ) ^c C ) = ( ( 0 x. B ) ^c C ) ) |
| 29 | oveq1 | |- ( A = 0 -> ( A ^c C ) = ( 0 ^c C ) ) |
|
| 30 | 29 | oveq1d | |- ( A = 0 -> ( ( A ^c C ) x. ( B ^c C ) ) = ( ( 0 ^c C ) x. ( B ^c C ) ) ) |
| 31 | 28 30 | eqeq12d | |- ( A = 0 -> ( ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) <-> ( ( 0 x. B ) ^c C ) = ( ( 0 ^c C ) x. ( B ^c C ) ) ) ) |
| 32 | 26 31 | syl5ibrcom | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( A = 0 -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) ) |
| 33 | 32 | a1dd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( A = 0 -> ( B =/= 0 -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) ) ) |
| 34 | 1 | adantr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. RR ) |
| 35 | simpl1r | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> 0 <_ A ) |
|
| 36 | simprl | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A =/= 0 ) |
|
| 37 | 34 35 36 | ne0gt0d | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> 0 < A ) |
| 38 | 34 37 | elrpd | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. RR+ ) |
| 39 | 14 | adantr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. RR ) |
| 40 | simpl2r | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> 0 <_ B ) |
|
| 41 | simprr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B =/= 0 ) |
|
| 42 | 39 40 41 | ne0gt0d | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> 0 < B ) |
| 43 | 39 42 | elrpd | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. RR+ ) |
| 44 | 38 43 | relogmuld | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( log ` ( A x. B ) ) = ( ( log ` A ) + ( log ` B ) ) ) |
| 45 | 44 | oveq2d | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( C x. ( log ` ( A x. B ) ) ) = ( C x. ( ( log ` A ) + ( log ` B ) ) ) ) |
| 46 | 5 | adantr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> C e. CC ) |
| 47 | 2 | adantr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. CC ) |
| 48 | 47 36 | logcld | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( log ` A ) e. CC ) |
| 49 | 15 | adantr | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. CC ) |
| 50 | 49 41 | logcld | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( log ` B ) e. CC ) |
| 51 | 46 48 50 | adddid | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( C x. ( ( log ` A ) + ( log ` B ) ) ) = ( ( C x. ( log ` A ) ) + ( C x. ( log ` B ) ) ) ) |
| 52 | 45 51 | eqtrd | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( C x. ( log ` ( A x. B ) ) ) = ( ( C x. ( log ` A ) ) + ( C x. ( log ` B ) ) ) ) |
| 53 | 52 | fveq2d | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( exp ` ( C x. ( log ` ( A x. B ) ) ) ) = ( exp ` ( ( C x. ( log ` A ) ) + ( C x. ( log ` B ) ) ) ) ) |
| 54 | 46 48 | mulcld | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( C x. ( log ` A ) ) e. CC ) |
| 55 | 46 50 | mulcld | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( C x. ( log ` B ) ) e. CC ) |
| 56 | efadd | |- ( ( ( C x. ( log ` A ) ) e. CC /\ ( C x. ( log ` B ) ) e. CC ) -> ( exp ` ( ( C x. ( log ` A ) ) + ( C x. ( log ` B ) ) ) ) = ( ( exp ` ( C x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` B ) ) ) ) ) |
|
| 57 | 54 55 56 | syl2anc | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( exp ` ( ( C x. ( log ` A ) ) + ( C x. ( log ` B ) ) ) ) = ( ( exp ` ( C x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` B ) ) ) ) ) |
| 58 | 53 57 | eqtrd | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( exp ` ( C x. ( log ` ( A x. B ) ) ) ) = ( ( exp ` ( C x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` B ) ) ) ) ) |
| 59 | 47 49 | mulcld | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A x. B ) e. CC ) |
| 60 | 47 49 36 41 | mulne0d | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A x. B ) =/= 0 ) |
| 61 | cxpef | |- ( ( ( A x. B ) e. CC /\ ( A x. B ) =/= 0 /\ C e. CC ) -> ( ( A x. B ) ^c C ) = ( exp ` ( C x. ( log ` ( A x. B ) ) ) ) ) |
|
| 62 | 59 60 46 61 | syl3anc | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) ^c C ) = ( exp ` ( C x. ( log ` ( A x. B ) ) ) ) ) |
| 63 | cxpef | |- ( ( A e. CC /\ A =/= 0 /\ C e. CC ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
|
| 64 | 47 36 46 63 | syl3anc | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
| 65 | cxpef | |- ( ( B e. CC /\ B =/= 0 /\ C e. CC ) -> ( B ^c C ) = ( exp ` ( C x. ( log ` B ) ) ) ) |
|
| 66 | 49 41 46 65 | syl3anc | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( B ^c C ) = ( exp ` ( C x. ( log ` B ) ) ) ) |
| 67 | 64 66 | oveq12d | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A ^c C ) x. ( B ^c C ) ) = ( ( exp ` ( C x. ( log ` A ) ) ) x. ( exp ` ( C x. ( log ` B ) ) ) ) ) |
| 68 | 58 62 67 | 3eqtr4d | |- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) |
| 69 | 68 | exp32 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( A =/= 0 -> ( B =/= 0 -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) ) ) |
| 70 | 33 69 | pm2.61dne | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( B =/= 0 -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) ) |
| 71 | 13 70 | pm2.61dne | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. CC ) -> ( ( A x. B ) ^c C ) = ( ( A ^c C ) x. ( B ^c C ) ) ) |