This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mulcxp . (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulcxp.1 | |- ( ph -> A e. CC ) |
|
| mulcxp.2 | |- ( ph -> C e. CC ) |
||
| Assertion | mulcxplem | |- ( ph -> ( 0 ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcxp.1 | |- ( ph -> A e. CC ) |
|
| 2 | mulcxp.2 | |- ( ph -> C e. CC ) |
|
| 3 | oveq2 | |- ( C = 0 -> ( 0 ^c C ) = ( 0 ^c 0 ) ) |
|
| 4 | 0cn | |- 0 e. CC |
|
| 5 | cxp0 | |- ( 0 e. CC -> ( 0 ^c 0 ) = 1 ) |
|
| 6 | 4 5 | ax-mp | |- ( 0 ^c 0 ) = 1 |
| 7 | 3 6 | eqtrdi | |- ( C = 0 -> ( 0 ^c C ) = 1 ) |
| 8 | oveq2 | |- ( C = 0 -> ( A ^c C ) = ( A ^c 0 ) ) |
|
| 9 | 8 7 | oveq12d | |- ( C = 0 -> ( ( A ^c C ) x. ( 0 ^c C ) ) = ( ( A ^c 0 ) x. 1 ) ) |
| 10 | 7 9 | eqeq12d | |- ( C = 0 -> ( ( 0 ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) <-> 1 = ( ( A ^c 0 ) x. 1 ) ) ) |
| 11 | cxpcl | |- ( ( A e. CC /\ C e. CC ) -> ( A ^c C ) e. CC ) |
|
| 12 | 1 2 11 | syl2anc | |- ( ph -> ( A ^c C ) e. CC ) |
| 13 | 12 | adantr | |- ( ( ph /\ C =/= 0 ) -> ( A ^c C ) e. CC ) |
| 14 | 13 | mul01d | |- ( ( ph /\ C =/= 0 ) -> ( ( A ^c C ) x. 0 ) = 0 ) |
| 15 | 0cxp | |- ( ( C e. CC /\ C =/= 0 ) -> ( 0 ^c C ) = 0 ) |
|
| 16 | 2 15 | sylan | |- ( ( ph /\ C =/= 0 ) -> ( 0 ^c C ) = 0 ) |
| 17 | 16 | oveq2d | |- ( ( ph /\ C =/= 0 ) -> ( ( A ^c C ) x. ( 0 ^c C ) ) = ( ( A ^c C ) x. 0 ) ) |
| 18 | 14 17 16 | 3eqtr4rd | |- ( ( ph /\ C =/= 0 ) -> ( 0 ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) ) |
| 19 | cxp0 | |- ( A e. CC -> ( A ^c 0 ) = 1 ) |
|
| 20 | 1 19 | syl | |- ( ph -> ( A ^c 0 ) = 1 ) |
| 21 | 20 | oveq1d | |- ( ph -> ( ( A ^c 0 ) x. 1 ) = ( 1 x. 1 ) ) |
| 22 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 23 | 21 22 | eqtr2di | |- ( ph -> 1 = ( ( A ^c 0 ) x. 1 ) ) |
| 24 | 10 18 23 | pm2.61ne | |- ( ph -> ( 0 ^c C ) = ( ( A ^c C ) x. ( 0 ^c C ) ) ) |