This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxprec | |- ( ( A e. RR+ /\ B e. CC ) -> ( ( 1 / A ) ^c B ) = ( 1 / ( A ^c B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn | |- ( A e. RR+ -> A e. CC ) |
|
| 2 | cxpcl | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. RR+ /\ B e. CC ) -> ( A ^c B ) e. CC ) |
| 4 | rpreccl | |- ( A e. RR+ -> ( 1 / A ) e. RR+ ) |
|
| 5 | 4 | rpcnd | |- ( A e. RR+ -> ( 1 / A ) e. CC ) |
| 6 | cxpcl | |- ( ( ( 1 / A ) e. CC /\ B e. CC ) -> ( ( 1 / A ) ^c B ) e. CC ) |
|
| 7 | 5 6 | sylan | |- ( ( A e. RR+ /\ B e. CC ) -> ( ( 1 / A ) ^c B ) e. CC ) |
| 8 | 1 | adantr | |- ( ( A e. RR+ /\ B e. CC ) -> A e. CC ) |
| 9 | rpne0 | |- ( A e. RR+ -> A =/= 0 ) |
|
| 10 | 9 | adantr | |- ( ( A e. RR+ /\ B e. CC ) -> A =/= 0 ) |
| 11 | simpr | |- ( ( A e. RR+ /\ B e. CC ) -> B e. CC ) |
|
| 12 | cxpne0 | |- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) =/= 0 ) |
|
| 13 | 8 10 11 12 | syl3anc | |- ( ( A e. RR+ /\ B e. CC ) -> ( A ^c B ) =/= 0 ) |
| 14 | 8 10 | recidd | |- ( ( A e. RR+ /\ B e. CC ) -> ( A x. ( 1 / A ) ) = 1 ) |
| 15 | 14 | oveq1d | |- ( ( A e. RR+ /\ B e. CC ) -> ( ( A x. ( 1 / A ) ) ^c B ) = ( 1 ^c B ) ) |
| 16 | rprege0 | |- ( A e. RR+ -> ( A e. RR /\ 0 <_ A ) ) |
|
| 17 | 16 | adantr | |- ( ( A e. RR+ /\ B e. CC ) -> ( A e. RR /\ 0 <_ A ) ) |
| 18 | 4 | rprege0d | |- ( A e. RR+ -> ( ( 1 / A ) e. RR /\ 0 <_ ( 1 / A ) ) ) |
| 19 | 18 | adantr | |- ( ( A e. RR+ /\ B e. CC ) -> ( ( 1 / A ) e. RR /\ 0 <_ ( 1 / A ) ) ) |
| 20 | mulcxp | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( ( 1 / A ) e. RR /\ 0 <_ ( 1 / A ) ) /\ B e. CC ) -> ( ( A x. ( 1 / A ) ) ^c B ) = ( ( A ^c B ) x. ( ( 1 / A ) ^c B ) ) ) |
|
| 21 | 17 19 11 20 | syl3anc | |- ( ( A e. RR+ /\ B e. CC ) -> ( ( A x. ( 1 / A ) ) ^c B ) = ( ( A ^c B ) x. ( ( 1 / A ) ^c B ) ) ) |
| 22 | 1cxp | |- ( B e. CC -> ( 1 ^c B ) = 1 ) |
|
| 23 | 11 22 | syl | |- ( ( A e. RR+ /\ B e. CC ) -> ( 1 ^c B ) = 1 ) |
| 24 | 15 21 23 | 3eqtr3d | |- ( ( A e. RR+ /\ B e. CC ) -> ( ( A ^c B ) x. ( ( 1 / A ) ^c B ) ) = 1 ) |
| 25 | 3 7 13 24 | mvllmuld | |- ( ( A e. RR+ /\ B e. CC ) -> ( ( 1 / A ) ^c B ) = ( 1 / ( A ^c B ) ) ) |