This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complex exponentiation of a product. Proposition 10-4.2(c) of Gleason p. 135. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcxp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 3 | 2 | mul01d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 0 ) = 0 ) |
| 4 | 3 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 0 ) ↑𝑐 𝐶 ) = ( 0 ↑𝑐 𝐶 ) ) |
| 5 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 6 | 2 5 | mulcxplem | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( 0 ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) ) |
| 7 | 4 6 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 0 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) ) |
| 8 | oveq2 | ⊢ ( 𝐵 = 0 → ( 𝐴 · 𝐵 ) = ( 𝐴 · 0 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝐵 = 0 → ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 · 0 ) ↑𝑐 𝐶 ) ) |
| 10 | oveq1 | ⊢ ( 𝐵 = 0 → ( 𝐵 ↑𝑐 𝐶 ) = ( 0 ↑𝑐 𝐶 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝐵 = 0 → ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝐵 = 0 → ( ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ↔ ( ( 𝐴 · 0 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) ) ) |
| 13 | 7 12 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( 𝐵 = 0 → ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) ) |
| 14 | simp2l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℝ ) | |
| 15 | 14 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 16 | 15 | mul02d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( 0 · 𝐵 ) = 0 ) |
| 17 | 16 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( ( 0 · 𝐵 ) ↑𝑐 𝐶 ) = ( 0 ↑𝑐 𝐶 ) ) |
| 18 | 15 5 | mulcxplem | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( 0 ↑𝑐 𝐶 ) = ( ( 𝐵 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) ) |
| 19 | cxpcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ↑𝑐 𝐶 ) ∈ ℂ ) | |
| 20 | 15 5 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ↑𝑐 𝐶 ) ∈ ℂ ) |
| 21 | 0cn | ⊢ 0 ∈ ℂ | |
| 22 | cxpcl | ⊢ ( ( 0 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 0 ↑𝑐 𝐶 ) ∈ ℂ ) | |
| 23 | 21 5 22 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( 0 ↑𝑐 𝐶 ) ∈ ℂ ) |
| 24 | 20 23 | mulcomd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 ↑𝑐 𝐶 ) · ( 0 ↑𝑐 𝐶 ) ) = ( ( 0 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 25 | 18 24 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( 0 ↑𝑐 𝐶 ) = ( ( 0 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 26 | 17 25 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( ( 0 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 0 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 27 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 · 𝐵 ) = ( 0 · 𝐵 ) ) | |
| 28 | 27 | oveq1d | ⊢ ( 𝐴 = 0 → ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 0 · 𝐵 ) ↑𝑐 𝐶 ) ) |
| 29 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑𝑐 𝐶 ) = ( 0 ↑𝑐 𝐶 ) ) | |
| 30 | 29 | oveq1d | ⊢ ( 𝐴 = 0 → ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) = ( ( 0 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 31 | 28 30 | eqeq12d | ⊢ ( 𝐴 = 0 → ( ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ↔ ( ( 0 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 0 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) ) |
| 32 | 26 31 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( 𝐴 = 0 → ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) ) |
| 33 | 32 | a1dd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( 𝐴 = 0 → ( 𝐵 ≠ 0 → ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) ) ) |
| 34 | 1 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℝ ) |
| 35 | simpl1r | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 0 ≤ 𝐴 ) | |
| 36 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 𝐴 ≠ 0 ) | |
| 37 | 34 35 36 | ne0gt0d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 0 < 𝐴 ) |
| 38 | 34 37 | elrpd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℝ+ ) |
| 39 | 14 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℝ ) |
| 40 | simpl2r | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 0 ≤ 𝐵 ) | |
| 41 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) | |
| 42 | 39 40 41 | ne0gt0d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 0 < 𝐵 ) |
| 43 | 39 42 | elrpd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℝ+ ) |
| 44 | 38 43 | relogmuld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( log ‘ ( 𝐴 · 𝐵 ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) |
| 45 | 44 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐶 · ( log ‘ ( 𝐴 · 𝐵 ) ) ) = ( 𝐶 · ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) ) |
| 46 | 5 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 𝐶 ∈ ℂ ) |
| 47 | 2 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℂ ) |
| 48 | 47 36 | logcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 49 | 15 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℂ ) |
| 50 | 49 41 | logcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 51 | 46 48 50 | adddid | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐶 · ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) ) = ( ( 𝐶 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) |
| 52 | 45 51 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐶 · ( log ‘ ( 𝐴 · 𝐵 ) ) ) = ( ( 𝐶 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) |
| 53 | 52 | fveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( exp ‘ ( 𝐶 · ( log ‘ ( 𝐴 · 𝐵 ) ) ) ) = ( exp ‘ ( ( 𝐶 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) ) |
| 54 | 46 48 | mulcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐶 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 55 | 46 50 | mulcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐶 · ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 56 | efadd | ⊢ ( ( ( 𝐶 · ( log ‘ 𝐴 ) ) ∈ ℂ ∧ ( 𝐶 · ( log ‘ 𝐵 ) ) ∈ ℂ ) → ( exp ‘ ( ( 𝐶 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) = ( ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) ) | |
| 57 | 54 55 56 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( exp ‘ ( ( 𝐶 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) = ( ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) ) |
| 58 | 53 57 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( exp ‘ ( 𝐶 · ( log ‘ ( 𝐴 · 𝐵 ) ) ) ) = ( ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) ) |
| 59 | 47 49 | mulcld | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 60 | 47 49 36 41 | mulne0d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ≠ 0 ) |
| 61 | cxpef | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ ( 𝐴 · 𝐵 ) ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ ( 𝐴 · 𝐵 ) ) ) ) ) | |
| 62 | 59 60 46 61 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ ( 𝐴 · 𝐵 ) ) ) ) ) |
| 63 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) | |
| 64 | 47 36 46 63 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) |
| 65 | cxpef | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) | |
| 66 | 49 41 46 65 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐵 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) |
| 67 | 64 66 | oveq12d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) = ( ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( 𝐶 · ( log ‘ 𝐵 ) ) ) ) ) |
| 68 | 58 62 67 | 3eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) |
| 69 | 68 | exp32 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ≠ 0 → ( 𝐵 ≠ 0 → ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) ) ) |
| 70 | 33 69 | pm2.61dne | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( 𝐵 ≠ 0 → ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) ) |
| 71 | 13 70 | pm2.61dne | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) · ( 𝐵 ↑𝑐 𝐶 ) ) ) |