This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mul02 . If any real does not produce 0 when multiplied by 0 , then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul02lem1 | |- ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) -> B = ( B + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | remulcl | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 x. A ) e. RR ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR -> ( 0 x. A ) e. RR ) |
| 4 | ax-rrecex | |- ( ( ( 0 x. A ) e. RR /\ ( 0 x. A ) =/= 0 ) -> E. y e. RR ( ( 0 x. A ) x. y ) = 1 ) |
|
| 5 | 3 4 | sylan | |- ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) -> E. y e. RR ( ( 0 x. A ) x. y ) = 1 ) |
| 6 | 5 | adantr | |- ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) -> E. y e. RR ( ( 0 x. A ) x. y ) = 1 ) |
| 7 | 00id | |- ( 0 + 0 ) = 0 |
|
| 8 | 7 | oveq2i | |- ( ( ( y x. A ) x. B ) x. ( 0 + 0 ) ) = ( ( ( y x. A ) x. B ) x. 0 ) |
| 9 | 8 | eqcomi | |- ( ( ( y x. A ) x. B ) x. 0 ) = ( ( ( y x. A ) x. B ) x. ( 0 + 0 ) ) |
| 10 | simprl | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> y e. RR ) |
|
| 11 | 10 | recnd | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> y e. CC ) |
| 12 | simplll | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> A e. RR ) |
|
| 13 | 12 | recnd | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> A e. CC ) |
| 14 | 11 13 | mulcld | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( y x. A ) e. CC ) |
| 15 | simplr | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> B e. CC ) |
|
| 16 | 0cn | |- 0 e. CC |
|
| 17 | mul32 | |- ( ( ( y x. A ) e. CC /\ B e. CC /\ 0 e. CC ) -> ( ( ( y x. A ) x. B ) x. 0 ) = ( ( ( y x. A ) x. 0 ) x. B ) ) |
|
| 18 | 16 17 | mp3an3 | |- ( ( ( y x. A ) e. CC /\ B e. CC ) -> ( ( ( y x. A ) x. B ) x. 0 ) = ( ( ( y x. A ) x. 0 ) x. B ) ) |
| 19 | 14 15 18 | syl2anc | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( y x. A ) x. B ) x. 0 ) = ( ( ( y x. A ) x. 0 ) x. B ) ) |
| 20 | mul31 | |- ( ( y e. CC /\ A e. CC /\ 0 e. CC ) -> ( ( y x. A ) x. 0 ) = ( ( 0 x. A ) x. y ) ) |
|
| 21 | 16 20 | mp3an3 | |- ( ( y e. CC /\ A e. CC ) -> ( ( y x. A ) x. 0 ) = ( ( 0 x. A ) x. y ) ) |
| 22 | 11 13 21 | syl2anc | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( y x. A ) x. 0 ) = ( ( 0 x. A ) x. y ) ) |
| 23 | simprr | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( 0 x. A ) x. y ) = 1 ) |
|
| 24 | 22 23 | eqtrd | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( y x. A ) x. 0 ) = 1 ) |
| 25 | 24 | oveq1d | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( y x. A ) x. 0 ) x. B ) = ( 1 x. B ) ) |
| 26 | mullid | |- ( B e. CC -> ( 1 x. B ) = B ) |
|
| 27 | 26 | ad2antlr | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( 1 x. B ) = B ) |
| 28 | 25 27 | eqtrd | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( y x. A ) x. 0 ) x. B ) = B ) |
| 29 | 19 28 | eqtrd | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( y x. A ) x. B ) x. 0 ) = B ) |
| 30 | 14 15 | mulcld | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( y x. A ) x. B ) e. CC ) |
| 31 | adddi | |- ( ( ( ( y x. A ) x. B ) e. CC /\ 0 e. CC /\ 0 e. CC ) -> ( ( ( y x. A ) x. B ) x. ( 0 + 0 ) ) = ( ( ( ( y x. A ) x. B ) x. 0 ) + ( ( ( y x. A ) x. B ) x. 0 ) ) ) |
|
| 32 | 16 16 31 | mp3an23 | |- ( ( ( y x. A ) x. B ) e. CC -> ( ( ( y x. A ) x. B ) x. ( 0 + 0 ) ) = ( ( ( ( y x. A ) x. B ) x. 0 ) + ( ( ( y x. A ) x. B ) x. 0 ) ) ) |
| 33 | 30 32 | syl | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( y x. A ) x. B ) x. ( 0 + 0 ) ) = ( ( ( ( y x. A ) x. B ) x. 0 ) + ( ( ( y x. A ) x. B ) x. 0 ) ) ) |
| 34 | 29 29 | oveq12d | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( ( y x. A ) x. B ) x. 0 ) + ( ( ( y x. A ) x. B ) x. 0 ) ) = ( B + B ) ) |
| 35 | 33 34 | eqtrd | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> ( ( ( y x. A ) x. B ) x. ( 0 + 0 ) ) = ( B + B ) ) |
| 36 | 9 29 35 | 3eqtr3a | |- ( ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) /\ ( y e. RR /\ ( ( 0 x. A ) x. y ) = 1 ) ) -> B = ( B + B ) ) |
| 37 | 6 36 | rexlimddv | |- ( ( ( A e. RR /\ ( 0 x. A ) =/= 0 ) /\ B e. CC ) -> B = ( B + B ) ) |