This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cldval.1 | |- X = U. J |
|
| Assertion | cldval | |- ( J e. Top -> ( Clsd ` J ) = { x e. ~P X | ( X \ x ) e. J } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldval.1 | |- X = U. J |
|
| 2 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 3 | pwexg | |- ( X e. J -> ~P X e. _V ) |
|
| 4 | rabexg | |- ( ~P X e. _V -> { x e. ~P X | ( X \ x ) e. J } e. _V ) |
|
| 5 | 2 3 4 | 3syl | |- ( J e. Top -> { x e. ~P X | ( X \ x ) e. J } e. _V ) |
| 6 | unieq | |- ( j = J -> U. j = U. J ) |
|
| 7 | 6 1 | eqtr4di | |- ( j = J -> U. j = X ) |
| 8 | 7 | pweqd | |- ( j = J -> ~P U. j = ~P X ) |
| 9 | 7 | difeq1d | |- ( j = J -> ( U. j \ x ) = ( X \ x ) ) |
| 10 | eleq12 | |- ( ( ( U. j \ x ) = ( X \ x ) /\ j = J ) -> ( ( U. j \ x ) e. j <-> ( X \ x ) e. J ) ) |
|
| 11 | 9 10 | mpancom | |- ( j = J -> ( ( U. j \ x ) e. j <-> ( X \ x ) e. J ) ) |
| 12 | 8 11 | rabeqbidv | |- ( j = J -> { x e. ~P U. j | ( U. j \ x ) e. j } = { x e. ~P X | ( X \ x ) e. J } ) |
| 13 | df-cld | |- Clsd = ( j e. Top |-> { x e. ~P U. j | ( U. j \ x ) e. j } ) |
|
| 14 | 12 13 | fvmptg | |- ( ( J e. Top /\ { x e. ~P X | ( X \ x ) e. J } e. _V ) -> ( Clsd ` J ) = { x e. ~P X | ( X \ x ) e. J } ) |
| 15 | 5 14 | mpdan | |- ( J e. Top -> ( Clsd ` J ) = { x e. ~P X | ( X \ x ) e. J } ) |